forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ce.py
206 lines (173 loc) Β· 9.07 KB
/
train_ce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os
import random
import time
import distutils.util
import numpy as np
import paddle
import paddle.nn.functional as F
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from paddlenlp.transformers import PolyDecayWithWarmup
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients
from data import convert_example, read_data, create_dataloader
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--train_set", type=str, required=True, help="The full path of train_set_file.")
parser.add_argument("--test_file", type=str, required=True, help="The full path of test file")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=3, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proption over the training process.")
parser.add_argument("--valid_steps", default=100, type=int, help="The interval steps to evaluate model performance.")
parser.add_argument("--save_steps", default=100, type=int, help="The interval steps to save checkppoints.")
parser.add_argument("--logging_steps", default=10, type=int, help="The interval steps to logging.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu', 'npu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--use_amp", type=distutils.util.strtobool, default=False, help="Enable mixed precision training.")
parser.add_argument("--scale_loss", type=float, default=2**15, help="The value of scale_loss for fp16.")
parser.add_argument('--model_name_or_path', default="rocketqa-base-cross-encoder", help="The pretrained model used for training")
parser.add_argument("--eval_step", default=200, type=int, help="Step interval for evaluation.")
args = parser.parse_args()
# yapf: enable
@paddle.no_grad()
def evaluate(model, metric, data_loader, phase="dev"):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
"""
model.eval()
metric.reset()
for idx, batch in enumerate(data_loader):
input_ids, token_type_ids, labels = batch
pos_probs = model(input_ids=input_ids, token_type_ids=token_type_ids)
sim_score = F.softmax(pos_probs)
metric.update(preds=sim_score.numpy(), labels=labels)
print("eval_{} auc:{:.3}".format(phase, metric.accumulate()))
metric.reset()
model.train()
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
dev_count = paddle.distributed.get_world_size()
set_seed(args.seed)
train_ds = load_dataset(read_data, data_path=args.train_set, lazy=False)
dev_ds = load_dataset(read_data, data_path=args.test_file, lazy=False)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path, num_classes=2)
trans_func = partial(convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
is_pair=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"
), # segment
Stack(dtype="int64") # label
): [data for data in fn(samples)]
train_data_loader = create_dataloader(train_ds,
mode='train',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
dev_data_loader = create_dataloader(dev_ds,
mode='dev',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
model = paddle.DataParallel(model)
num_training_examples = len(train_ds)
# 4ε‘ gpu
max_train_steps = args.epochs * num_training_examples // args.batch_size // dev_count
warmup_steps = int(max_train_steps * args.warmup_proportion)
print("Device count: %d" % dev_count)
print("Num train examples: %d" % num_training_examples)
print("Max train steps: %d" % max_train_steps)
print("Num warmup steps: %d" % warmup_steps)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=args.learning_rate,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
grad_clip=paddle.nn.ClipGradByGlobalNorm(1.0))
criterion = paddle.nn.loss.CrossEntropyLoss()
metric = paddle.metric.Auc()
if args.use_amp:
scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss)
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
input_ids, token_type_ids, labels = batch
logits = model(input_ids, token_type_ids)
loss = criterion(logits, labels)
probs = F.softmax(logits, axis=1)
acc = paddle.metric.accuracy(input=probs, label=labels)
loss.backward()
optimizer.step()
optimizer.clear_grad()
global_step += 1
if global_step % args.logging_steps == 0 and rank == 0:
time_diff = time.time() - tic_train
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, accuracy: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, acc,
args.logging_steps / time_diff))
tic_train = time.time()
if global_step % args.eval_step == 0 and rank == 0:
evaluate(model, metric, dev_data_loader, "dev")
if global_step % args.save_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
tic_train = time.time()
# save final checkpoint
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
model_to_save = model._layers if isinstance(model,
paddle.DataParallel) else model
model_to_save.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
do_train()