forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
99 lines (86 loc) Β· 4.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import paddle
import paddle.nn.functional as F
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad
from tqdm import tqdm
from paddlenlp.transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from data import convert_example, read_text_pair, create_dataloader
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, required=True, default="checkpoints/model_900/model_state.pdparams", help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", type=int, default=128, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size per GPU/CPU for training.")
parser.add_argument("--test_set", type=str, required=True, help="The full path of test_set.")
parser.add_argument("--topk", type=int, default=10, help="The Topk texts.")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu', 'npu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument('--model_name_or_path', default="rocketqa-base-cross-encoder", help="The pretrained model used for training")
args = parser.parse_args()
# yapf: enable
@paddle.no_grad()
def predict(model, data_loader):
results = []
model.eval()
with paddle.no_grad():
for batch in data_loader:
input_ids, token_type_ids = batch
logits = model(input_ids, token_type_ids)
probs = F.softmax(logits)
probs = probs.numpy()
results.extend(probs[:, 1])
return results
if __name__ == "__main__":
paddle.set_device(args.device)
test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path, num_classes=2)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func = partial(convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
is_test=True,
is_pair=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"
), # segment
): [data for data in fn(samples)]
test_data_loader = create_dataloader(test_ds,
mode='predict',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
else:
raise ValueError(
"Please set --params_path with correct pretrained model file")
results = predict(model, test_data_loader)
test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False)
text_pairs = []
for idx, prob in enumerate(results):
text_pair = test_ds[idx]
text_pair["pred_prob"] = prob
text_pairs.append(text_pair)
text_pairs = sorted(text_pairs, key=lambda x: x['pred_prob'],
reverse=True)[:args.topk]
for item in text_pairs:
print(item)