-
Notifications
You must be signed in to change notification settings - Fork 6
/
sleep_summary.py
115 lines (84 loc) · 3.5 KB
/
sleep_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pandas as pd
import numpy as np
import sys
from glob import glob
import pickle
from sleep_eval import evaluate_scoring_algorithm, evaluation_summary
from sleep_misc import rescore_models
#from scipy.stats import ttest_ind
baselines = ["gt", "always1", "always0", "binterval", "wake", "sleep"]
defaultalgs = ["sazonov", "sazonov2", "cole", "time_based", "sadeh", "kripke", "webster", "oakley10", "oakley40", "oakley80" ]
defaultml = ["ExtraTrees", "SGD_perceptron", "SGD_log", "SGD_hinge", "SGD_huber"]
defaultnn = ["LSTM_20_raw", "LSTM_50_raw", "LSTM_100_raw", "CNN_20_raw", "CNN_50_raw", "CNN_100_raw"]
algs = defaultalgs + defaultml + defaultnn
def get_nndf(task, nn_type, feature_type):
"""
Get the dataframe corresponding to different configurations of LSTM or CNN (Deep Learning models)
"""
files = glob("./results/task%d_%s_%s*.csv.gz" % (task, nn_type, feature_type))
result = []
for file in files:
df = pd.read_csv(file)
nn_keys = []
for k in df.keys():
if nn_type in k:
nn_keys.append(k)
for k in nn_keys:
df[k + "_" + feature_type] = df[k]
del df[k]
result.append(df)
if len(result) == 1:
return result[0]
else:
merged = pd.merge(result[0], result[1])
for i in range(2, len(result)):
merged = pd.merge(merged, result[i])
return merged
def get_nns(task):
"""
"""
lstm_raw = get_nndf(task, "LSTM", "raw")
cnn_raw = get_nndf(task, "CNN", "raw")
merged = pd.merge(lstm_raw, cnn_raw)
return merged
def load_results(task):
"""
Load results from formula, machine learning based methods and combine with deep learning model based results
"""
ALGRESULTS = "./results/task%d_formulas.csv.gz" % (task)
MLRESULTS = "./results/task%d_ml.csv.gz" % (task)
dftest = pd.read_csv("./dftest_task%d.csv" % (task))
dfalg = pd.read_csv(ALGRESULTS)
dfml = pd.read_csv(MLRESULTS)
dfnn = get_nns(task)
dfml = dfml.rename(columns={"Unnamed: 0":"algs"})
merged = pd.merge(dfalg, dfml, on=["mesaid","linetime","actValue","gt","gt_sleep_block"]) #
merged = pd.merge(merged, dfnn, on=["mesaid","linetime","actValue","gt","gt_sleep_block"]) #
merged = pd.merge(merged, dftest, on=["mesaid","linetime","gt","gt_sleep_block"]) #
merged["time"] = pd.to_datetime(merged["linetime"])
merged["always1"] = 1
merged["always0"] = 0
merged["sleep"] = (~merged["wake"].astype(np.bool)).astype(float)
return merged
if __name__ == "__main__":
"""
Get a summary dataframe with all the evaluation results for different predictive models
"""
TASK = int(sys.argv[1])
PICKLE_RESULTFILE = "task%d_results.pkl" % (TASK)
SUMMARY_RESULTFILE = "task%d_summary.csv" % (TASK)
df = load_results(TASK)
print("Expanding algorithms...")
expanded_algs = rescore_models(df, algs)
results = {}
for alg in baselines + expanded_algs:
results[alg] = evaluate_scoring_algorithm(df, alg)
#print("Example of how to get p-values:")
#print("P = %.5f" % (ttest_ind(results1["cole"]["Precision"], results1["saznov"]["Precision"]))[1])
summary = evaluation_summary(df, expanded_algs + baselines)
summary = pd.DataFrame(summary)
summary.to_csv(SUMMARY_RESULTFILE)
print("Created summary '%s'" % (SUMMARY_RESULTFILE))
with open(PICKLE_RESULTFILE, "w") as f:
pickle.dump(results, f)
print("Created pickle result file '%s'" % (PICKLE_RESULTFILE))