forked from anthonywchen/RARR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
219 lines (190 loc) · 7.87 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""Utils for searching a query and returning top passages from search results."""
import concurrent.futures
import itertools
import os
import random
from typing import Any, Dict, List, Tuple
import bs4
import requests
import spacy
import torch
from sentence_transformers import CrossEncoder
PASSAGE_RANKER = CrossEncoder(
"cross-encoder/ms-marco-MiniLM-L-6-v2",
max_length=512,
device="cpu",
)
SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search/"
SUBSCRIPTION_KEY = os.getenv("AZURE_SEARCH_KEY")
TOKENIZER = spacy.load("en_core_web_sm", disable=["ner", "tagger", "lemmatizer"])
def chunk_text(
text: str,
sentences_per_passage: int,
filter_sentence_len: int,
sliding_distance: int = None,
) -> List[str]:
"""Chunks text into passages using a sliding window.
Args:
text: Text to chunk into passages.
sentences_per_passage: Number of sentences for each passage.
filter_sentence_len: Maximum number of chars of each sentence before being filtered.
sliding_distance: Sliding distance over the text. Allows the passages to have
overlap. The sliding distance cannot be greater than the window size.
Returns:
passages: Chunked passages from the text.
"""
if not sliding_distance or sliding_distance > sentences_per_passage:
sliding_distance = sentences_per_passage
assert sentences_per_passage > 0 and sliding_distance > 0
passages = []
try:
doc = TOKENIZER(text[:500000]) # Take 500k chars to not break tokenization.
sents = [
s.text
for s in doc.sents
if len(s.text) <= filter_sentence_len # Long sents are usually metadata.
]
for idx in range(0, len(sents), sliding_distance):
passages.append(" ".join(sents[idx : idx + sentences_per_passage]))
except UnicodeEncodeError as _: # Sometimes run into Unicode error when tokenizing.
print("Unicode error when using Spacy. Skipping text.")
return passages
def is_tag_visible(element: bs4.element) -> bool:
"""Determines if an HTML element is visible.
Args:
element: A BeautifulSoup element to check the visiblity of.
returns:
Whether the element is visible.
"""
if element.parent.name in [
"style",
"script",
"head",
"title",
"meta",
"[document]",
] or isinstance(element, bs4.element.Comment):
return False
return True
def scrape_url(url: str, timeout: float = 3) -> Tuple[str, str]:
"""Scrapes a URL for all text information.
Args:
url: URL of webpage to scrape.
timeout: Timeout of the requests call.
Returns:
web_text: The visible text of the scraped URL.
url: URL input.
"""
# Scrape the URL
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
except requests.exceptions.RequestException as _:
return None, url
# Extract out all text from the tags
try:
soup = bs4.BeautifulSoup(response.text, "html.parser")
texts = soup.findAll(text=True)
# Filter out invisible text from the page.
visible_text = filter(is_tag_visible, texts)
except Exception as _:
return None, url
# Returns all the text concatenated as a string.
web_text = " ".join(t.strip() for t in visible_text).strip()
# Clean up spacing.
web_text = " ".join(web_text.split())
return web_text, url
def search_bing(query: str, timeout: float = 3) -> List[str]:
"""Searches the query using Bing.
Args:
query: Search query.
timeout: Timeout of the requests call.
Returns:
search_results: A list of the top URLs relevant to the query.
"""
headers = {"Ocp-Apim-Subscription-Key": SUBSCRIPTION_KEY}
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
response = requests.get(SEARCH_URL, headers=headers, params=params, timeout=timeout)
response.raise_for_status()
response = response.json()
search_results = [r["url"] for r in response["webPages"]["value"]]
return search_results
def run_search(
query: str,
cached_search_results: List[str] = None,
max_search_results_per_query: int = 3,
max_sentences_per_passage: int = 5,
sliding_distance: int = 1,
max_passages_per_search_result_to_return: int = 1,
timeout: float = 3,
randomize_num_sentences: bool = False,
filter_sentence_len: int = 250,
max_passages_per_search_result_to_score: int = 30,
) -> List[Dict[str, Any]]:
"""Searches the query on a search engine and returns the most relevant information.
Args:
query: Search query.
max_search_results_per_query: Maximum number of search results to get return.
max_sentences_per_passage: Maximum number of sentences for each passage.
filter_sentence_len: Maximum length of a sentence before being filtered.
sliding_distance: Sliding distance over the sentences of each search result.
Used to extract passages.
max_passages_per_search_result_to_score: Maxinum number of passages to score for
each search result.
max_passages_per_search_result_to_return: Maximum number of passages to return
for each search result.
Returns:
retrieved_passages: Top retrieved passages for the search query.
"""
if cached_search_results is not None:
search_results = cached_search_results
else:
search_results = search_bing(query, timeout=timeout)
# Scrape search results in parallel
with concurrent.futures.ThreadPoolExecutor() as e:
scraped_results = e.map(scrape_url, search_results, itertools.repeat(timeout))
# Remove URLs if we weren't able to scrape anything or if they are a PDF.
scraped_results = [r for r in scraped_results if r[0] and ".pdf" not in r[1]]
# Iterate through the scraped results and extract out the most useful passages.
retrieved_passages = []
for webtext, url in scraped_results[:max_search_results_per_query]:
if randomize_num_sentences:
sents_per_passage = random.randint(1, max_sentences_per_passage)
else:
sents_per_passage = max_sentences_per_passage
# Chunk the extracted text into passages.
passages = chunk_text(
text=webtext,
sentences_per_passage=sents_per_passage,
filter_sentence_len=filter_sentence_len,
sliding_distance=sliding_distance,
)
passages = passages[:max_passages_per_search_result_to_score]
if not passages:
continue
# Score the passages by relevance to the query using a cross-encoder.
scores = PASSAGE_RANKER.predict([(query, p) for p in passages]).tolist()
passage_scores = list(zip(passages, scores))
# Take the top passages_per_search passages for the current search result.
passage_scores.sort(key=lambda x: x[1], reverse=True)
for passage, score in passage_scores[:max_passages_per_search_result_to_return]:
retrieved_passages.append(
{
"text": passage,
"url": url,
"query": query,
"sents_per_passage": sents_per_passage,
"retrieval_score": score, # Cross-encoder score as retr score
}
)
if retrieved_passages:
# Sort all retrieved passages by the retrieval score.
retrieved_passages = sorted(
retrieved_passages, key=lambda d: d["retrieval_score"], reverse=True
)
# Normalize the retreival scores into probabilities
scores = [r["retrieval_score"] for r in retrieved_passages]
probs = torch.nn.functional.softmax(torch.Tensor(scores), dim=-1).tolist()
for prob, passage in zip(probs, retrieved_passages):
passage["score"] = prob
return retrieved_passages