From 548ecce8a64e6219fb457a5d607b6bd2555c5329 Mon Sep 17 00:00:00 2001 From: Arid Hasan Date: Mon, 9 Sep 2024 14:43:26 -0300 Subject: [PATCH] add mistral asset BN-IN --- .../QA/MultiNativQA_Mistral_7b_ZeroShot.py | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 assets/bn_in/QA/MultiNativQA_Mistral_7b_ZeroShot.py diff --git a/assets/bn_in/QA/MultiNativQA_Mistral_7b_ZeroShot.py b/assets/bn_in/QA/MultiNativQA_Mistral_7b_ZeroShot.py new file mode 100644 index 00000000..573d146c --- /dev/null +++ b/assets/bn_in/QA/MultiNativQA_Mistral_7b_ZeroShot.py @@ -0,0 +1,61 @@ +import json + +from llmebench.datasets import MultiNativQADataset +from llmebench.models import AzureModel +from llmebench.tasks import MultiNativQATask + + +def metadata(): + return { + "author": "Arabic Language Technologies, QCRI, HBKU", + "model": "Mistral 7b", + "description": "Deployed on Azure.", + "scores": {}, + } + + +def config(): + return { + "dataset": MultiNativQADataset, + "task": MultiNativQATask, + "model": AzureModel, + "general_args": {"test_split": "bangla_in"}, + } + + +def prompt(input_sample): + + # Define the question prompt + question_prompt = f""" + Please use your expertise to answer the following Bangla question. Answer in Bengali, India and rate your confidence level from 1 to 10. + Provide your response in the following JSON format: {{"answer": "your answer", "score": your confidence score}}. + Please provide JSON output only. No additional text. Answer should be limited to less or equal to {input_sample['length']} words. + + Question: {input_sample['question']} + """ + + # Define the assistant prompt + assistant_prompt = """ + You are a Bengali-speaking AI assistant from India, specializing in providing detailed and accurate answers across various fields. + Your task is to deliver clear, concise, and relevant information. + """ + + return [ + # { + # "role": "assistant", + # "content": assistant_prompt, + # }, + { + "role": "user", + "content": question_prompt, + }, + ] + + +def post_process(response): + data = response["output"] + if "\n\n" in data: + data = data.split("\n\n")[0] + response = json.loads(data) + answer = response["answer"] + return answer