-
Notifications
You must be signed in to change notification settings - Fork 18
/
SANADAkhbarona.py
64 lines (54 loc) · 2 KB
/
SANADAkhbarona.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from pathlib import Path
import pandas as pd
from llmebench.datasets.dataset_base import DatasetBase
from llmebench.tasks import TaskType
class SANADAkhbaronaDataset(DatasetBase):
def __init__(self, **kwargs):
super(SANADAkhbaronaDataset, self).__init__(**kwargs)
@staticmethod
def get_data_sample():
return {"input": "some tweet", "label": "tech"}
@staticmethod
def metadata():
return {
"language": "ar",
"citation": """@article{einea2019sanad,
title={Sanad: Single-label {A}rabic news articles dataset for automatic text categorization},
author={Einea, Omar and Elnagar, Ashraf and Al Debsi, Ridhwan},
journal={Data in brief},
volume={25},
pages={104076},
year={2019},
publisher={Elsevier}
}""",
"link": "https://data.mendeley.com/datasets/57zpx667y9/2",
"license": "CC BY 4.0",
"splits": {
"test": "SANAD_akhbarona_news_cat_test.tsv",
"train": "SANAD_akhbarona_news_cat_train.tsv",
},
"task_type": TaskType.Classification,
"class_labels": [
"politics",
"religion",
"medical",
"sports",
"tech",
"finance",
"culture",
],
}
def load_data(self, data_path):
data_path = self.resolve_path(data_path)
data = []
raw_data = pd.read_csv(data_path, sep="\t")
dir_path = data_path.parent
for index, row in raw_data.iterrows():
filename = row["file_path"].strip()
file = open(dir_path / filename, "r")
lines = file.readlines()
lines = " ".join(lines).strip()
label = row["class_label"]
entry = {"input_id": filename, "input": lines, "label": label}
data.append(entry)
return data