diff --git a/pywr-schema/src/metric.rs b/pywr-schema/src/metric.rs index 18f64665..510d1ee8 100644 --- a/pywr-schema/src/metric.rs +++ b/pywr-schema/src/metric.rs @@ -63,14 +63,15 @@ impl Metric { } Self::Timeseries(ts_ref) => { let param_idx = match &ts_ref.columns { - TimeseriesColumns::Scenario(scenario) => { + Some(TimeseriesColumns::Scenario(scenario)) => { args.timeseries .load_df(network, ts_ref.name.as_ref(), args.domain, scenario.as_str())? } - TimeseriesColumns::Column(col) => { + Some(TimeseriesColumns::Column(col)) => { args.timeseries .load_column(network, ts_ref.name.as_ref(), col.as_str())? } + None => args.timeseries.load_single_column(network, ts_ref.name.as_ref())?, }; Ok(MetricF64::ParameterValue(param_idx)) } @@ -211,12 +212,12 @@ impl TryFromV1Parameter for Metric { }; let cols = match (&t.column, &t.scenario) { - (Some(col), None) => TimeseriesColumns::Column(col.clone()), - (None, Some(scenario)) => TimeseriesColumns::Scenario(scenario.clone()), + (Some(col), None) => Some(TimeseriesColumns::Column(col.clone())), + (None, Some(scenario)) => Some(TimeseriesColumns::Scenario(scenario.clone())), (Some(_), Some(_)) => { return Err(ConversionError::AmbiguousColumnAndScenario(name.clone())) } - (None, None) => return Err(ConversionError::MissingColumnOrScenario(name.clone())), + (None, None) => None, }; Self::Timeseries(TimeseriesReference::new(name, cols)) @@ -238,11 +239,11 @@ pub enum TimeseriesColumns { #[derive(serde::Deserialize, serde::Serialize, Debug, Clone, JsonSchema)] pub struct TimeseriesReference { name: String, - columns: TimeseriesColumns, + columns: Option, } impl TimeseriesReference { - pub fn new(name: String, columns: TimeseriesColumns) -> Self { + pub fn new(name: String, columns: Option) -> Self { Self { name, columns } } diff --git a/pywr-schema/src/model.rs b/pywr-schema/src/model.rs index f509507d..344f8841 100644 --- a/pywr-schema/src/model.rs +++ b/pywr-schema/src/model.rs @@ -312,10 +312,10 @@ impl PywrNetwork { }; let cols = match (&ts_ref.column, &ts_ref.scenario) { - (Some(col), None) => TimeseriesColumns::Column(col.clone()), - (None, Some(scenario)) => TimeseriesColumns::Scenario(scenario.clone()), + (Some(col), None) => Some(TimeseriesColumns::Column(col.clone())), + (None, Some(scenario)) => Some(TimeseriesColumns::Scenario(scenario.clone())), (Some(_), Some(_)) => return, - (None, None) => return, + (None, None) => None, }; *m = Metric::Timeseries(TimeseriesReference::new(name, cols)); diff --git a/pywr-schema/src/test_models/timeseries.json b/pywr-schema/src/test_models/timeseries.json index d9113c8a..5d08d794 100644 --- a/pywr-schema/src/test_models/timeseries.json +++ b/pywr-schema/src/test_models/timeseries.json @@ -73,11 +73,7 @@ "metrics": [ { "type": "Timeseries", - "name": "inflow", - "columns": { - "type": "Column", - "name": "inflow1" - } + "name": "inflow" }, { "type": "Constant", diff --git a/pywr-schema/src/timeseries/align_and_resample.rs b/pywr-schema/src/timeseries/align_and_resample.rs index e91390c2..eadce8f7 100644 --- a/pywr-schema/src/timeseries/align_and_resample.rs +++ b/pywr-schema/src/timeseries/align_and_resample.rs @@ -9,6 +9,7 @@ pub fn align_and_resample( df: DataFrame, time_col: &str, domain: &ModelDomain, + drop_time_col: bool, ) -> Result { // Ensure type of time column is datetime and that it is sorted let sort_options = SortMultipleOptions::default() @@ -78,12 +79,16 @@ pub fn align_and_resample( Ordering::Equal => df, }; - let df = slice_end(df, time_col, domain)?; + let mut df = slice_end(df, time_col, domain)?; if df.height() != domain.time().timesteps().len() { return Err(TimeseriesError::DataFrameTimestepMismatch(name.to_string())); } + if drop_time_col { + let _ = df.drop_in_place(time_col)?; + } + Ok(df) } @@ -141,7 +146,7 @@ mod tests { ) .unwrap(); - df = align_and_resample("test", df, "time", &domain).unwrap(); + df = align_and_resample("test", df, "time", &domain, false).unwrap(); let expected_dates = Series::new( "time", @@ -195,7 +200,7 @@ mod tests { ) .unwrap(); - df = align_and_resample("test", df, "time", &domain).unwrap(); + df = align_and_resample("test", df, "time", &domain, false).unwrap(); let expected_values = Series::new( "values", @@ -235,7 +240,7 @@ mod tests { ) .unwrap(); - df = align_and_resample("test", df, "time", &domain).unwrap(); + df = align_and_resample("test", df, "time", &domain, false).unwrap(); let expected_values = Series::new("values", values); let resampled_values = df.column("values").unwrap(); @@ -244,6 +249,7 @@ mod tests { let expected_dates = Series::new("time", time) .cast(&DataType::Datetime(TimeUnit::Nanoseconds, None)) .unwrap(); + let resampled_dates = df.column("time").unwrap(); assert!(resampled_dates.equals(&expected_dates)); } diff --git a/pywr-schema/src/timeseries/mod.rs b/pywr-schema/src/timeseries/mod.rs index bcbd275f..756b568b 100644 --- a/pywr-schema/src/timeseries/mod.rs +++ b/pywr-schema/src/timeseries/mod.rs @@ -44,6 +44,10 @@ pub enum TimeseriesError { DataFrameTimestepMismatch(String), #[error("A timeseries dataframe with the name '{0}' already exists.")] TimeseriesDataframeAlreadyExists(String), + #[error("The timeseries dataset '{0}' has more than one column of data so a column or scenario name must be provided for any reference")] + TimeseriesColumnOrScenarioRequired(String), + #[error("The timeseries dataset '{0}' has no columns")] + TimeseriesDataframeHasNoColumns(String), #[error("Polars error: {0}")] #[cfg(feature = "core")] PolarsError(#[from] PolarsError), @@ -149,6 +153,44 @@ impl LoadedTimeseriesCollection { } } + pub fn load_single_column( + &self, + network: &mut pywr_core::network::Network, + name: &str, + ) -> Result, TimeseriesError> { + let df = self + .timeseries + .get(name) + .ok_or(TimeseriesError::TimeseriesNotFound(name.to_string()))?; + + let cols = df.get_column_names(); + + if cols.len() > 1 { + return Err(TimeseriesError::TimeseriesColumnOrScenarioRequired(name.to_string())); + }; + + let col = cols.first().ok_or(TimeseriesError::ColumnNotFound { + col: "".to_string(), + name: name.to_string(), + })?; + + let series = df.column(col)?; + + let array = series.cast(&Float64)?.f64()?.to_ndarray()?.to_owned(); + let name = format!("{}_{}", name, col); + + match network.get_parameter_index_by_name(&name) { + Ok(idx) => Ok(idx), + Err(e) => match e { + PywrError::ParameterNotFound(_) => { + let p = Array1Parameter::new(&name, array, None); + Ok(network.add_parameter(Box::new(p))?) + } + _ => Err(TimeseriesError::PywrCore(e)), + }, + } + } + pub fn load_df( &self, network: &mut pywr_core::network::Network, diff --git a/pywr-schema/src/timeseries/polars_dataset.rs b/pywr-schema/src/timeseries/polars_dataset.rs index e522748d..892a62d1 100644 --- a/pywr-schema/src/timeseries/polars_dataset.rs +++ b/pywr-schema/src/timeseries/polars_dataset.rs @@ -83,11 +83,11 @@ mod core { }; df = match self.time_col { - Some(ref col) => align_and_resample(name, df, col, domain)?, + Some(ref col) => align_and_resample(name, df, col, domain, true)?, None => { // If a time col has not been provided assume it is the first column let first_col = df.get_column_names()[0].to_string(); - align_and_resample(name, df, first_col.as_str(), domain)? + align_and_resample(name, df, first_col.as_str(), domain, true)? } };