-
Notifications
You must be signed in to change notification settings - Fork 0
/
pfaffian.py
486 lines (367 loc) · 14 KB
/
pfaffian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""A package for computing Pfaffians"""
import cmath
import math
import numpy as np
import scipy.linalg as la
import scipy.sparse as sp
def householder_real(x):
"""(v, tau, alpha) = householder_real(x)
Compute a Householder transformation such that
(1-tau v v^T) x = alpha e_1
where x and v a real vectors, tau is 0 or 2, and
alpha a real number (e_1 is the first unit vector)
"""
assert x.shape[0] > 0
sigma = x[1:] @ x[1:]
if sigma == 0:
return (np.zeros(x.shape[0]), 0, x[0])
else:
norm_x = math.sqrt(x[0] ** 2 + sigma)
v = x.copy()
# depending on whether x[0] is positive or negatvie
# choose the sign
if x[0] <= 0:
v[0] -= norm_x
alpha = +norm_x
else:
v[0] += norm_x
alpha = -norm_x
v /= np.linalg.norm(v)
return (v, 2, alpha)
def householder_complex(x):
"""(v, tau, alpha) = householder_real(x)
Compute a Householder transformation such that
(1-tau v v^T) x = alpha e_1
where x and v a complex vectors, tau is 0 or 2, and
alpha a complex number (e_1 is the first unit vector)
"""
assert x.shape[0] > 0
sigma = np.conj(x[1:]) @ x[1:]
if sigma == 0:
return (np.zeros(x.shape[0]), 0, x[0])
else:
norm_x = cmath.sqrt(x[0].conjugate() * x[0] + sigma)
v = x.copy()
phase = cmath.exp(1j * math.atan2(x[0].imag, x[0].real))
v[0] += phase * norm_x
v /= np.linalg.norm(v)
return (v, 2, -phase * norm_x)
def skew_tridiagonalize(A, overwrite_a=False, calc_q=True):
""" T, Q = skew_tridiagonalize(A, overwrite_a, calc_q=True)
or
T = skew_tridiagonalize(A, overwrite_a, calc_q=False)
Bring a real or complex skew-symmetric matrix (A=-A^T) into
tridiagonal form T (with zero diagonal) with a orthogonal
(real case) or unitary (complex case) matrix U such that
A = Q T Q^T
(Note that Q^T and *not* Q^dagger also in the complex case)
A is overwritten if overwrite_a=True (default: False), and
Q only calculated if calc_q=True (default: True)
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14
n = A.shape[0]
A = np.asarray(A) # the slice views work only properly for arrays
# Check if we have a complex data type
if np.issubdtype(A.dtype, np.complexfloating):
householder = householder_complex
elif not np.issubdtype(A.dtype, np.number):
raise TypeError("pfaffian() can only work on numeric input")
else:
householder = householder_real
if not overwrite_a:
A = A.copy()
if calc_q:
Q = np.eye(A.shape[0], dtype=A.dtype)
for i in range(A.shape[0] - 2):
# Find a Householder vector to eliminate the i-th column
v, tau, alpha = householder(A[i + 1 :, i])
A[i + 1, i] = alpha
A[i, i + 1] = -alpha
A[i + 2 :, i] = 0
A[i, i + 2 :] = 0
# Update the matrix block A(i+1:N,i+1:N)
w = tau * A[i + 1 :, i + 1 :] @ v.conj()
A[i + 1 :, i + 1 :] += np.outer(v, w) - np.outer(w, v)
if calc_q:
# Accumulate the individual Householder reflections
# Accumulate them in the form P_1*P_2*..., which is
# (..*P_2*P_1)^dagger
y = tau * Q[:, i + 1 :] @ v
Q[:, i + 1 :] -= np.outer(y, v.conj())
if calc_q:
return (np.asmatrix(A), np.asmatrix(Q))
else:
return np.asmatrix(A)
def skew_LTL(A, overwrite_a=False, calc_L=True, calc_P=True):
""" T, L, P = skew_LTL(A, overwrite_a, calc_q=True)
Bring a real or complex skew-symmetric matrix (A=-A^T) into
tridiagonal form T (with zero diagonal) with a lower unit
triangular matrix L such that
P A P^T= L T L^T
A is overwritten if overwrite_a=True (default: False),
L and P only calculated if calc_L=True or calc_P=True,
respectively (default: True).
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14
n = A.shape[0]
A = np.asarray(A) # the slice views work only properly for arrays
if not overwrite_a:
A = A.copy()
if calc_L:
L = np.eye(n, dtype=A.dtype)
if calc_P:
Pv = np.arange(n)
for k in range(n - 2):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
# Check if we need to pivot
if kp != k + 1:
# interchange rows k+1 and kp
temp = A[k + 1, k:].copy()
A[k + 1, k:] = A[kp, k:]
A[kp, k:] = temp
# Then interchange columns k+1 and kp
temp = A[k:, k + 1].copy()
A[k:, k + 1] = A[k:, kp]
A[k:, kp] = temp
if calc_L:
# permute L accordingly
temp = L[k + 1, 1 : k + 1].copy()
L[k + 1, 1 : k + 1] = L[kp, 1 : k + 1]
L[kp, 1 : k + 1] = temp
if calc_P:
# accumulate the permutation matrix
temp = Pv[k + 1]
Pv[k + 1] = Pv[kp]
Pv[kp] = temp
# Now form the Gauss vector
if A[k + 1, k] != 0.0:
tau = A[k + 2 :, k].copy()
tau /= A[k + 1, k]
# clear eliminated row and column
A[k + 2 :, k] = 0.0
A[k, k + 2 :] = 0.0
# Update the matrix block A(k+2:,k+2)
A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
if calc_L:
L[k + 2 :, k + 1] = tau
if calc_P:
# form the permutation matrix as a sparse matrix
P = sp.csr_matrix((np.ones(n), (np.arange(n), Pv)))
if calc_L:
if calc_P:
return (np.asmatrix(A), np.asmatrix(L), P)
else:
return (np.asmatrix(A), np.asmatrix(L))
else:
if calc_P:
return (np.asmatrix(A), P)
else:
return np.asmatrix(A)
def pfaffian(A, overwrite_a=False, method="P", sign_only=False):
""" pfaffian(A, overwrite_a=False, method='P')
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
either the Parlett-Reid algorithm (method='P', default),
or the Householder tridiagonalization (method='H')
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14, abs((A + A.T).max())
# Check that the method variable is appropriately set
assert method == "P" or method == "H"
if method == "H" and sign_only:
raise Exception("Use `method='P'` when using `sign_only=True`")
if method == "P":
return pfaffian_LTL(A, overwrite_a, sign_only)
else:
return pfaffian_householder(A, overwrite_a)
def pfaffian_LTL(A, overwrite_a=False, sign_only=False):
""" pfaffian_LTL(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
the Parlett-Reid algorithm.
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14
n = A.shape[0]
A = np.asarray(A) # the slice views work only properly for arrays
# Quick return if possible
if n % 2 == 1:
return 0
if not overwrite_a:
A = A.copy()
pfaffian_val = 1.0
for k in range(0, n - 1, 2):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
# Check if we need to pivot
if kp != k + 1:
# interchange rows k+1 and kp
temp = A[k + 1, k:].copy()
A[k + 1, k:] = A[kp, k:]
A[kp, k:] = temp
# Then interchange columns k+1 and kp
temp = A[k:, k + 1].copy()
A[k:, k + 1] = A[k:, kp]
A[k:, kp] = temp
# every interchange corresponds to a "-" in det(P)
pfaffian_val *= -1
# Now form the Gauss vector
if A[k + 1, k] != 0.0:
tau = A[k, k + 2 :].copy()
tau /= A[k, k + 1]
if sign_only:
pfaffian_val *= np.sign(A[k, k + 1])
else:
pfaffian_val *= A[k, k + 1]
if k + 2 < n:
# Update the matrix block A(k+2:,k+2)
A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
else:
# if we encounter a zero on the super/subdiagonal, the
# Pfaffian is 0
return 0.0
return pfaffian_val
def pfaffian_householder(A, overwrite_a=False):
""" pfaffian(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses the
Householder tridiagonalization.
Note that the function pfaffian_schur() can also be used in the
real case. That function does not make use of the skew-symmetry
and is only slightly slower than pfaffian_householder().
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14
n = A.shape[0]
# Quick return if possible
if n % 2 == 1:
return 0
# Check if we have a complex data type
if np.issubdtype(A.dtype, np.complexfloating):
householder = householder_complex
elif not np.issubdtype(A.dtype, np.number):
raise TypeError("pfaffian() can only work on numeric input")
else:
householder = householder_real
A = np.asarray(A) # the slice views work only properly for arrays
if not overwrite_a:
A = A.copy()
pfaffian_val = 1.0
for i in range(A.shape[0] - 2):
# Find a Householder vector to eliminate the i-th column
v, tau, alpha = householder(A[i + 1 :, i])
A[i + 1, i] = alpha
A[i, i + 1] = -alpha
A[i + 2 :, i] = 0
A[i, i + 2 :] = 0
# Update the matrix block A(i+1:N,i+1:N)
w = tau * A[i + 1 :, i + 1 :] @ v.conj()
A[i + 1 :, i + 1 :] += np.outer(v, w) - np.outer(w, v)
if tau != 0:
pfaffian_val *= 1 - tau
if i % 2 == 0:
pfaffian_val *= -alpha
pfaffian_val *= A[n - 2, n - 1]
return pfaffian_val
def pfaffian_schur(A, overwrite_a=False):
"""Calculate Pfaffian of a real antisymmetric matrix using
the Schur decomposition. (Hessenberg would in principle be faster,
but scipy-0.8 messed up the performance for scipy.linalg.hessenberg()).
This function does not make use of the skew-symmetry of the matrix A,
but uses a LAPACK routine that is coded in FORTRAN and hence faster
than python. As a consequence, pfaffian_schur is only slightly slower
than pfaffian().
"""
assert np.issubdtype(A.dtype, np.number) and not np.issubdtype(
A.dtype, np.complexfloating
)
assert A.shape[0] == A.shape[1] > 0
assert abs(A + A.T).max() < 1e-14
# Quick return if possible
if A.shape[0] % 2 == 1:
return 0
(t, z) = la.schur(A, output="real", overwrite_a=overwrite_a)
l = np.diag(t, 1)
return np.prod(l[::2]) * la.det(z)
def pfaffian_sign(A, overwrite_a=False):
""" pfaffian(A, overwrite_a=False, method='P')
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
either the Parlett-Reid algorithm (method='P', default),
or the Householder tridiagonalization (method='H')
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14, abs((A + A.T).max())
return pfaffian_LTL_sign(A, overwrite_a)
def pfaffian_LTL_sign(A, overwrite_a=False):
"""MODIFIED FROM pfaffian_LTL(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
the Parlett-Reid algorithm.
"""
# Check if matrix is square
assert A.shape[0] == A.shape[1] > 0
# Check if it's skew-symmetric
assert abs((A + A.T).max()) < 1e-14
n = A.shape[0]
A = np.asarray(A) # the slice views work only properly for arrays
# Quick return if possible
if n % 2 == 1:
return 0
if not overwrite_a:
A = A.copy()
pfaffian_val = 1.0
for k in range(0, n - 1, 2):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
# Check if we need to pivot
if kp != k + 1:
# interchange rows k+1 and kp
temp = A[k + 1, k:].copy()
A[k + 1, k:] = A[kp, k:]
A[kp, k:] = temp
# Then interchange columns k+1 and kp
temp = A[k:, k + 1].copy()
A[k:, k + 1] = A[k:, kp]
A[k:, kp] = temp
# every interchange corresponds to a "-" in det(P)
pfaffian_val *= -1
# Now form the Gauss vector
if A[k + 1, k] != 0.0:
tau = A[k, k + 2 :].copy()
tau /= A[k, k + 1]
pfaffian_val *= A[k, k + 1]
if k + 2 < n:
# Update the matrix block A(k+2:,k+2)
A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
else:
# if we encounter a zero on the super/subdiagonal, the
# Pfaffian is 0
return 0.0
return pfaffian_val