forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsketchy.py
85 lines (74 loc) · 3.04 KB
/
sketchy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Interface for loading sketchy data into tensorflow."""
import tensorflow.compat.v2 as tf
def load_frames(filenames, num_parallel_reads=1, num_map_threads=None):
if not num_map_threads:
num_map_threads = num_parallel_reads
dataset = tf.data.TFRecordDataset(
filenames, num_parallel_reads=num_parallel_reads)
return dataset.map(_parse_example, num_parallel_calls=num_map_threads)
_FEATURES = {
# Actions
'actions':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
# Observations
'gripper/joints/velocity':
tf.io.FixedLenFeature(shape=1, dtype=tf.float32),
'gripper/joints/torque':
tf.io.FixedLenFeature(shape=1, dtype=tf.float32),
'gripper/grasp':
tf.io.FixedLenFeature(shape=1, dtype=tf.int64),
'gripper/joints/angle':
tf.io.FixedLenFeature(shape=1, dtype=tf.float32),
'sawyer/joints/velocity':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
'sawyer/pinch/pose':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
'sawyer/tcp/pose':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
'sawyer/tcp/effort':
tf.io.FixedLenFeature(shape=6, dtype=tf.float32),
'sawyer/joints/torque':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
'sawyer/tcp/velocity':
tf.io.FixedLenFeature(shape=6, dtype=tf.float32),
'sawyer/joints/angle':
tf.io.FixedLenFeature(shape=7, dtype=tf.float32),
'wrist/torque':
tf.io.FixedLenFeature(shape=3, dtype=tf.float32),
'wrist/force':
tf.io.FixedLenFeature(shape=3, dtype=tf.float32),
'pixels/basket_front_left':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
'pixels/basket_back_left':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
'pixels/basket_front_right':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
'pixels/royale_camera_driver_depth':
tf.io.FixedLenFeature(shape=(171, 224, 1), dtype=tf.float32),
'pixels/royale_camera_driver_gray':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
'pixels/usbcam0':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
'pixels/usbcam1':
tf.io.FixedLenFeature(shape=1, dtype=tf.string),
}
def _parse_example(example):
return _decode_images(tf.io.parse_single_example(example, _FEATURES))
def _decode_images(record):
for name, value in list(record.items()):
if value.dtype == tf.string:
record[name] = tf.io.decode_jpeg(value[0])
return record