forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunification.rkt
825 lines (743 loc) · 26 KB
/
unification.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
#lang racket/base
;***************************************************************************************;
;**** Operations On Literals: Unification And Friends ****;
;***************************************************************************************;
;;; * A literal A unifies with a literal B iff there exists a substitution σ s.t. Aσ = Bσ.
;;; * A literal A left-unifies (= matches) with a literal B iff there exists a substitution
;;; σ s.t. Aσ = B.
;;; Note that left-unifies => unifies.
(require bazaar/cond-else
bazaar/list
bazaar/mutation
(except-in bazaar/order atom<=>)
define2
global
racket/dict
racket/list
racket/match
(submod racket/performance-hint begin-encourage-inline))
(provide (all-defined-out))
;===============;
;=== Globals ===;
;===============;
(define-global:category *atom-order* 'atom1
'(atom1 KBO1lex)
"Atom comparison function for rewrite rules.")
(define (get-atom<=> #:? [atom-order (*atom-order*)])
(case atom-order
[(KBO1lex) KBO1lex<=>]
[(atom1) atom1<=>]
[else (error "Unknown atom order: ~a" (*atom-order*))]))
;=================;
;=== Variables ===;
;=================;
;; The name of a variable is a number.
(struct Var (name)
#:prefab)
;; Comparisons between variables
(begin-encourage-inline
(define Var-name<? <)
(define Var-name=? eqv?)
(define Var-name<=> number<=>)
(define (Var=? v1 v2) (Var-name=? (Var-name v1) (Var-name v2)))
(define (Var<? v1 v2) (Var-name<? (Var-name v1) (Var-name v2))))
(define (Var<=> v1 v2) (Var-name<=> (Var-name v1) (Var-name v2)))
; Ensures: (order=? (Var<=> v1 v2)) = (Vars=? v1 v2)
;:::::::::::::::::::::::::::::::::::;
;:: Basic operations on Variables ::;
;:::::::::::::::::::::::::::::::::::;
;; All symbols starting with a capitale letter are considered as variables.
;;
;; any/c -> boolean?
(define (symbol-variable? t)
(and (symbol? t)
(char<=? #\A (string-ref (symbol->string t) 0) #\Z)))
;; Returns a variable 'name' corresponding to the given symbol.
;; Currently accepts only symbols like X1, X2, … and A, B, C, …
;; The same symbol is always mapped to the same Var-name, globally.
;;
;; symbol? -> exact-nonnegative-integer?
(define (symbol->Var-name s)
(define str (symbol->string s))
(cond [(regexp-match #px"^X(\\d+)$" str)
=> (λ (m) (+ 26 (string->number (second m))))]
[(regexp-match #px"^[A-Z]$" str)
=> (λ (m) (- (char->integer (string-ref str 0))
(char->integer #\A)))]
[else
(error 'Varify "Unknown variable format: ~a" s)]))
;; Inverse operation of symbol->Var-name.
;; The same Var-name is always mapped to the same symbol, globally.
;;
;; exact-nonnegative-integer? -> symbol?
(define (Var-name->symbol n)
(cond [(symbol-variable? n) n]
[(number? n)
(if (< n 26)
(string->symbol (string (integer->char (+ (char->integer #\A) n))))
(string->symbol (format "X~a" (- n 26))))]
[else (error 'Var-name->symbol "Don't know what to do with ~a" n)]))
;; Returns a new atom like t where all symbol-variables have been turned into `Var?`s.
;; Notice: Does *not* ensure unicity of the variables across clauses.
;;
;; tree? -> atom?
(define (Varify t)
(cond [(pair? t)
; Works also in assocs
(cons (Varify (car t))
(Varify (cdr t)))]
[(symbol-variable? t)
(Var (symbol->Var-name t))]
[else t]))
;====================================;
;=== Substitutions data structure ===;
;====================================;
;; Basic substitution operations.
;; Simply put, a substitution is a `hasheqv`, where the keys are variables names,
;; and the values are terms.
(begin-encourage-inline
(define make-subst make-hasheqv)
(define subst? hash?)
(define in-subst in-hash)
(define subst-count hash-count)
(define subst-ref/name hash-ref) ; for when the name is retrieved from the subst
(define subst-set!/name hash-set!)
(define subst-copy hash-copy)
;; Modifies the substitution to bind `t` to `var`.
;; Returns the substitution to mimick the immutable update behaviour.
;;
;; subst? Var? term? -> subst?
(define (subst-set! subst V t)
(hash-set! subst (Var-name V) t)
subst)
;; Returns the binding for the variable `V` in `subst`, or `default` if it doesn't exist.
;;
;; susbt? Var? term? -> term?
(define (subst-ref subst V [default #false])
(hash-ref subst (Var-name V) default))
;; Returns the binding for the variable `V` in `susbt` if it exists,
;; otherwise sets it to `default` and returns `default`.
;;
;; subst? Var? term? -> term?
(define (subst-ref! subst V default)
(hash-ref! subst (Var-name V) default))
;; Updates the binding for the variable `V` with `update`
;; Returns the modified substitution
;;
;; subst : subst?
;; V : Var?
;; update : term? -> term?
;; default : term
(define (subst-update! subst V update default)
(hash-update! subst (Var-name V) update default)
subst)
;; Returns the substitution as an association list sorted by `Var-name<?`.
;;
;; subst -> list?
(define (subst->list s)
(sort (hash->list s) Var-name<? #:key car)))
;::::::::::::::::::::::::::::;
;:: Immutable substitution ::;
;::::::::::::::::::::::::::::;
;;; Like mutable substitions above, but uses an immutable association list.
;;; This can be faster in some contexts
(begin-encourage-inline
;; Returns a new immutable substitution.
;;
;; list? -> list?
(define (make-imsubst [pairs '()]) pairs)
;; Like subst-ref for immutable substitutions.
;;
;; imsubst? Var? term? -> term?
(define (imsubst-ref subst V default)
(define p (assoc (Var-name V) subst Var-name=?))
(if p (cdr p) default)))
;; like subst-set!, but does not modify the substitution and returns a new substitution.
;;
;; subst : imsubst?
;; V : var?
;; t : term?
(define (imsubst-set subst V t)
(define name (Var-name V))
(let loop ([s subst] [left '()])
(cond/else
[(empty? s)
(cons (cons name t) subst)]
#:else
(define p (car s))
#:cond
[(Var-name=? (car p) name)
(rev-append left (cons (cons name t) (cdr s)))]
#:else
(loop (cdr s) (cons p left)))))
;===============================;
;=== Operations on Variables ===;
;===============================;
;; Global index to ensure unicity of variable names.
(define fresh-idx 0)
;; Returns a fresh variable with a unique name.
;;
;; -> Var?
(define (new-Var)
(++ fresh-idx)
(Var fresh-idx))
;; Renames all variables with fresh names to avoid collisions.
;;
;; term? -> term?
(define (fresh t)
(define h (make-subst))
(let loop ([t t])
(cond [(pair? t)
(cons (loop (car t)) (loop (cdr t)))]
[(Var? t)
(subst-ref! h t new-Var)]
[else t])))
;; Variables names are mapped to a unique symbol, but the resulting Var-name is unpredictable,
;; and this mapping is guaranteed to be consistent only locally to the term t.
;; Used mostly to turn human-readable expressions into terms, without needing to worry about
;; the actual names of the variables.
;;
;; tree? -> term?
(define (symbol-variables->Vars t)
(define h (make-hasheq))
(let loop ([t t])
(cond [(pair? t)
(cons (loop (car t)) (loop (cdr t)))]
[(symbol-variable? t)
(hash-ref! h t new-Var)]
[else t])))
;; Variables are replaced with symbols by order of appearence. Mostly for ease of reading by humans.
;;
;; term? -> tree?
(define (Vars->symbols t)
(define h (make-subst))
(define idx -1)
(let loop ([t t])
(cond [(pair? t)
(cons (loop (car t)) (loop (cdr t)))]
[(Var? t)
(subst-ref! h t (λ () (++ idx) (Var-name->symbol idx)))]
[else t])))
;; Returns a subst of the number of occurrences of the variables *names* in the term `t`.
;;
;; term? -> subst?
(define (var-occs t)
(define h (make-subst))
(let loop ([t t])
(cond [(pair? t)
(loop (car t))
(loop (cdr t))]
[(Var? t)
(subst-update! h t add1 0)]))
h)
;; Returns the variable names of the term `t`.
;;
;; term? -> list?
(define (vars t)
(map car (subst->list (var-occs t))))
;; Returns the variables of the term `t`.
;;
;; term? -> (listof Var?)
(define (Vars t)
(map Var (vars t)))
;; Returns the set of variables *names* that appear in `t1` but not in `t2`.
;;
;; term? term? -> list?
(define (variables-minus t1 t2)
(define h2 (var-occs t2))
(for/list ([(v n) (in-hash (var-occs t1))]
#:unless (hash-has-key? h2 v))
v))
;; Returns the lexicographical index of each occurrence of the variable names of `t`,
;; in depth-first order.
;;
;; term? -> list?
(define (find-var-names t)
(define h (make-subst))
(let loop ([t t] [idx 0])
(cond [(pair? t)
(loop (cdr t) (loop (car t) idx))]
[(Var? t)
(subst-update! h t min idx)
(+ idx 1)]
[else idx]))
(map car (sort (subst->list h) < #:key cdr)))
;; Returns '< if each variable of t1 appears no more times in t1
;; than the same variable in t2,
;; and at least one variable appears strictly fewer times.
;; Returns '= if the occurrences are equal.
;; Returns #false otherwise.
;; This can be seen as a kind of Pareto dominance.
;; This is used for KBO in particular.
;; Note: (var-occs<=> t1 t2) == (var-occs<=> t2 t1)
;; Note: t1 and t2 may have variables in common if they are two subterms of the same clause.
;;
;; term? term? -> (or/c '< '> '= #false)
(define (var-occs<=> t1 t2)
(define h1 (var-occs t1)) ; assumes does not contain 0s
(define h2 (var-occs t2)) ; assumes does not contain 0s
(define n-common 0)
(define cmp
(for/fold ([cmp '=])
([(v1 n1) (in-subst h1)])
(define n2 (subst-ref/name h2 v1 0))
(cond
[(> n2 0)
(++ n-common)
(define c (number<=> n1 n2))
(cond [(eq? cmp '=) c]
[(eq? c '=) cmp]
[(eq? cmp c) c]
[else #false])] ; incomparable
[else cmp])))
(define n1 (subst-count h1))
(define n2 (subst-count h2))
(cond [(and (< n-common n1)
(< n-common n2))
#false]
[(< n-common n2)
(case cmp [(< =) '<] [else #false])]
[(< n-common n1)
(case cmp [(> =) '>] [else #false])]
[else cmp]))
;=====================;
;=== Boolean logic ===;
;=====================;
(begin-encourage-inline
;; Logical false
(define lfalse '$false)
;; any/c -> boolean
(define (lfalse? x) (eq? lfalse x))
;; lfalse must be the bottom element for the various atom orders.
;;
;; any/c any/c -> (or/c '< '> '= #false)
(define (lfalse<=> a b)
(define afalse? (lfalse? a))
(define bfalse? (lfalse? b))
(cond [(and afalse? bfalse?) '=]
[afalse? '<]
[bfalse? '>]
[else #false]))
(define ltrue '$true)
;; any/c -> boolean?
(define (ltrue? x) (eq? x ltrue))
;; Returns whether the literal `lit` has negative polarity.
;;
;; literal? -> boolean?
(define (lnot? lit)
(and (pair? lit)
(eq? 'not (car lit))))
;; Inverses the polarity of the literal.
;; NOTICE: Always use `lnot`, do not construct negated atoms yourself.
;;
;; literal? -> literal?
(define (lnot x)
(cond [(lnot? x) (cadr x)]
[(lfalse? x) ltrue]
[(ltrue? x) lfalse]
[else (list 'not x)]))
;; Compares the polarities of the two literals.
;; (polarity<=> 'a '(not a)) returns '<
;;
;; literal? literal? -> (or/c '< '> '= #false)
(define (polarity<=> lit1 lit2)
(boolean<=> (lnot? lit1) (lnot? lit2))))
;=================================;
;=== Literals, atoms, terms, … ===;
;=================================;
#|
literal = atom | (not atom)
atom = constant | (predicate term ...)
term = (funtion term ...) | variable | constant
predicate = symbol?
function = symbol?
constant = symbol?
variable = (Var number?)
For simplicity, we sometimes use 'term' to mean 'atom or term', or even
'literal, atom or term'.
|#
;; Returns the number of nodes in the tree representing the term `t` (or literal, atom).
;;
;; term? -> exact-nonnegative-integer?
(define (tree-size t)
(let loop ([t t] [s 0])
(cond [(Var? t) (+ s 1)]
[(pair? t)
(loop (cdr t) (loop (car t) s))]
[else (+ s 1)])))
;; The literals are depolarized first, because negation should not count.
;;
;; literal? -> exact-nonnegative-integer?
(define (literal-size lit)
(tree-size (depolarize lit)))
;; In particular, it should be as easy to prove A | B as ~A | ~B, otherwise finding equivalences
;; can be more difficult.
;;
;; clause? -> exact-nonnegative-integer?
(define (clause-size cl)
(for/sum ([lit (in-list cl)])
(literal-size lit)))
;; Comparison of atoms (or literals) for atom rewriting.
;; Returns < if for every substitution α, (atom1<=> t1α t2α) returns <.
;; (Can this be calculated given a base atom1<=> ?)
;; - Rk: variables of t2 that don't appear in t1 are not a problem since they are not instanciated
;; in t2α.
;; - Equality is loose and is based only on *some* properties of the atoms.
;; - This is a good first comparator, but not good enough (e.g., does not associativity)
;; Notice: (order=? (atom<=> t1 t2)) does NOT necessarily mean that t1 and t2 are syntactically equal.
;;
;; literal? literal? -> (or/c '< '> '= #false)
(define (atom1<=> lit1 lit2)
(let ([t1 (depolarize lit1)]
[t2 (depolarize lit2)])
(cond/else
[(lfalse<=> t1 t2)] ; continue if neither is lfalse
#:else
(define size (number<=> (tree-size t1) (tree-size t2)))
(define vs (var-occs<=> t1 t2))
#:cond
[(and (order=? vs) (order=? size)) (or (term-lex2<=> t1 t2) '=)] ; for commutativity
[(and (order≤? vs) (order≤? size)) '<] ; one is necessarily '<
[(and (order≥? vs) (order≥? size)) '>]
#:else #false)))
;; For KBO.
;; fun-weight is also for constants, hence it's more like symbol-weight
;; (but the name 'function' is commonly used for constants too).
;;
;; t : term?
;; var-weight : number?
;; fun-weight : symbol? -> number?
;; -> number?
(define (term-weight t #:? [var-weight 1] #:? [fun-weight (λ (f) 1)])
(let loop ([t t])
(cond [(Var? t) var-weight]
[(symbol? t) (fun-weight t)]
[(list? t) (for/sum ([s (in-list t)]) (loop s))]
[else (error "Unknown term ~a" t)])))
;; Knuth-Bendix Ordering, naive version.
;; Can be used for atom rewriting.
;; To do: Implement a faster version.
;; See "Things to know when implementing KB", Löchner, 2006.
;; var-weight MUST be ≤ to all fun-weights of constants.
;; Simple version for clarity and proximity to the specifications.
;;
;; var-weight : number?
;; fun-weight : symbol? -> number?
;; fun<=> : symbol? symbol? -> (or/c '< '> '= #false)
;; -> (term? term? -> (or/c '< '> '= #false))
(define (make-KBO<=> #:? var-weight #:? fun-weight #:? [fun<=> symbol<=>])
(define (weight t)
(term-weight t #:var-weight var-weight #:fun-weight fun-weight))
(define (KBO<=> t1 t2)
(cond
[(and (Var? t1) (Var? t2)) (and (Var=? t1 t2) '=)] ; not specified, but surely right?
[(Var? t1) (and (occurs? t1 t2) '<)]
[(Var? t2) (and (occurs? t2 t1) '>)]
[else ; both are fun apps or constants
(define v (var-occs<=> t1 t2))
(and v
(let ([t-cmp (sub-KBO<=> (if (list? t1) t1 (list t1)) ; turn constants into fun apps.
(if (list? t2) t2 (list t2)))])
(case v
[(<) (and (order<=? t-cmp) t-cmp)]
[(>) (and (order>=? t-cmp) t-cmp)]
[(=) t-cmp])))]))
;; t1 and t2 MUST be lists.
(define (sub-KBO<=> t1 t2)
(chain-comparisons
(number<=> (weight t1) (weight t2))
(fun<=> (first t1) (first t2))
;; Chain on subterms.
(<=>map KBO<=> (rest t1) (rest t2))))
(λ (t1 t2)
(let ([t1 (depolarize t1)]
[t2 (depolarize t2)])
(or (lfalse<=> t1 t2)
(KBO<=> t1 t2)))))
;; Default KBO comparator.
;;
;; term? term? -> (or/c '< '> '= #false)
(define KBO1lex<=> (make-KBO<=>))
;; Returns the atom of the literal.
;;
;; literal? -> atom?
(define (depolarize lit)
(match lit
[`(not ,x) x]
[else lit]))
;; Returns the number of arguments of the predicate of the literal lit, after depolarizing it.
;;
;; literal? -> exact-nonnegative-integer?
(define (literal-arity lit)
(let ([lit (depolarize lit)])
(if (list? lit)
(length lit)
0)))
;; Returns the name of the predicate (or constant) of the literal.
;;
;; literal? -> symbol?
(define (literal-symbol lit)
(match lit
[`(not (,p . ,r)) p]
[`(not ,a) a]
[`(,p . ,r) p]
[else lit]))
;; Lexicographical comparison.
;; Used in literal<=> to sort literals within a clause. NOT used for rewriting.
;; Guarantees: (order=? (term-lex<=> t1 t2)) = (term==? t1 t2) (but maybe a slightly slower?)
;;
;; term? term? -> (or/c '< '> '= #false)
(define (term-lex<=> t1 t2)
(cond [(eq? t1 t2) '=] ; takes care of '()
[(and (pair? t1) (pair? t2))
(chain-comparisons (term-lex<=> (car t1) (car t2))
(term-lex<=> (cdr t1) (cdr t2)))]
[(pair? t1) '>]
[(pair? t2) '<]
[(and (Var? t1) (Var? t2))
(Var<=> t1 t2)]
[(Var? t1) '<]
[(Var? t2) '>]
[(and (symbol? t1) (symbol? t2))
(symbol<=> t1 t2)]
[else
(error 'term-lex<=> "Unknown term kind for: ~a, ~a" t1 t2)]))
;; Comparator for terms used in atom1<=> for atom rewriting.
;; Can't compare vars with symbols, or vars with vars. Can only compare ground symbols:
;; A binary rule can't be oriented with variables
;;
;; term? term? -> (or/c '< '> '= #false)
(define (term-lex2<=> t1 t2)
(cond [(eq? t1 t2) '=] ; takes care of '()
[(and (Var? t1) (Var? t2) (Var=? t1 t2)) '=]
[(or (Var? t1) (Var? t2)) #false] ; incomparable, cannot be oriented
[(and (pair? t1) (pair? t2))
(chain-comparisons (term-lex2<=> (car t1) (car t2))
(term-lex2<=> (cdr t1) (cdr t2)))]
[(pair? t1) '>]
[(pair? t2) '<]
[(and (symbol? t1) (symbol? t2))
(symbol<=> t1 t2)]
[else
(error 'term-lex2<=> "Unknown term kind for: ~a, ~a" t1 t2)]))
;; Depth-first lexicographical order (df-lex)
;; Used for literal ordering in clauses. Not used for atom rewriting.
;; Guarantees: (order=? (literal<=> lit1 lit2)) = (literal==? lit1 lit2). (or it's a bug)
;;
;; literal? literal? -> (or/c '< '> '= #false)
(define (literal<=> lit1 lit2)
(chain-comparisons
(polarity<=> lit1 lit2)
(symbol<=> (literal-symbol lit1) (literal-symbol lit2)) ; A literal cannot be a variable
(cond [(and (list? lit1) (list? lit2))
; this also checks arity
(<=>map term-lex<=> (rest lit1) (rest lit2))]
[(list? lit2) '<]
[(list? lit1) '>]
[else '=])))
;; Used to sort literals in a clause.
;;
;; literal? literal? -> boolean?
(define (literal<? lit1 lit2)
(order<? (literal<=> lit1 lit2)))
;; Syntactic comparison of terms and literals.
;; This works because variables are transparent (prefab), hence equal? traverses the Var struct too.
;; We use `==` to denote syntactic equivalence.
;;
;; term? term? -> boolean?
(define term==? equal?)
;; literal? literal? -> boolean?
(define literal==? equal?)
;==================================;
;=== Substitution / Unification ===;
;==================================;
;; Notice: Setting this to #true forces the mgu substitutions to ensure
;; dom(σ)\cap vran(σ) = ø
;; but can be exponentially slow in some rare cases.
;; Also, it's not necessary.
(define reduce-mgu? #false)
;; Returns a term where the substitution s is applied to the term t.
;; The substitution `s` may not be 'reduced' in the sense that variables
;; of the domain may appear in the range.
;;
;; term? subst? -> term?
(define (substitute/slow t s)
(define t-orig t)
(let loop ([t t])
(cond
[(null? t) t]
[(pair? t)
(cons (loop (car t))
(loop (cdr t)))]
[(and (Var? t)
(subst-ref s t #false))
; Recur into the substitution.
=> loop]
[else t])))
;; A simple box to signify that there is no need to attempt to substitute
;; inside `term` as this has already been done.
(struct already-substed (term) #:prefab)
;; Like `substitute/slow` but avoids unnecessary work.
;; Such substitutions are performed 'on-demand', if needed.
;; Once a substitution has been applied recursively to a rhs, the resulting
;; term is marked with `already-substed` to avoid attempting it again.
;;
;; Notice: This function can only be used if `s` is *not* going to be extended,
;; otherwise it may not produce the correct result.
;;
;; term? subst? -> term?
(define (substitute t s)
(define t-orig t)
(let loop ([t t])
(cond
[(null? t) t]
[(pair? t)
(cons (loop (car t))
(loop (cdr t)))]
[(and (Var? t)
(subst-ref s t #false))
; Recur into the substitution.
; This avoids recurring many times inside the same substitution.
=>
(λ (rhs)
(cond [(already-substed? rhs)
; No need to loop inside the new term.
(already-substed-term rhs)]
[else
(define new-rhs (loop rhs))
(subst-set! s t (already-substed new-rhs))
new-rhs]))]
[else t])))
;; Checks whether the variable `V` occurs un `t`.
;;
;; Var? term? -> boolean?
(define (occurs? V t)
(cond [(Var? t) (Var=? V t)]
[(pair? t)
(or (occurs? V (car t))
(occurs? V (cdr t)))]
[else #false]))
;; Returns #false if `V` occurs in `t2`, otherwise binds `t2` to `V` in `subst` and returns `subst`.
;;
;; Var? term? subst? -> (or/c #false subst?)
(define (occurs?/extend V t2 subst)
(define t2c (substitute/slow t2 subst))
(if (occurs? V t2c)
#false
(begin
(subst-set! subst V t2c)
subst)))
;; Returns one most general unifier α such that t1α = t2α.
;;
;; term? term? subst? -> subst?
(define (unify t1 t2 [subst (make-subst)])
(define success?
(let loop ([t1 t1] [t2 t2])
(cond/else
[(eq? t1 t2) ; takes care of both null?
subst]
[(and (pair? t1) (pair? t2))
(and (loop (car t1) (car t2))
(loop (cdr t1) (cdr t2)))]
#:else
(define v1? (Var? t1))
(define v2? (Var? t2))
#:cond
[(and (not v1?) (not v2?)) ; since they are not `eq?`
#false]
[(and v1? v2? (Var=? t1 t2)) ; since at least one is a Var
; Same variable, no need to substitute, and should not fail occurs?/extend.
subst]
#:else
(define t1b (and v1? (subst-ref subst t1 #false)))
(define t2b (and v2? (subst-ref subst t2 #false)))
#:cond
[(or t1b t2b)
; rec
(loop (or t1b t1) (or t2b t2))]
[v1? ; t2 may also be a variable
(occurs?/extend t1 t2 subst)]
[v2? ; v2? but not v1?
(occurs?/extend t2 t1 subst)]
#:else (void))))
; Make sure we return a most general unifier
; NOTICE: This can take a lot of time (see strest tests), but may prevent issues too.
(and success?
(if reduce-mgu?
(let ([s2 (make-subst)])
(for ([(k v) (in-subst subst)])
(subst-set!/name s2 k (substitute v subst)))
s2)
subst)))
;; Creates a procedure that returns the substitution α such that t1α = t2, of #false if none exists.
;; t2 is assumed to not contain any variable of t1.
;; Also known as matching
;; - The optional argument is useful to chain left-unify over several literals, say.
;; - Works with both mutable and immutable substitutions.
;; NOTICE:
;; The found substitution must be specializing, that is C2σ = C2 (and C1σ = C2),
;; otherwise safe factoring can fail, in particular.
;; Hence we must ensure that vars(C2) ∩ dom(σ) = ø.
(define-syntax-rule
(define-left-subst+unify left-substitute left-unify make-subst subst-ref subst-set)
(begin
;; Returns a term like `t` where the substitution `s` has been applied.
;;
;; term? subst? -> term?
(define (left-substitute t s)
(let loop ([t t])
(cond
[(null? t) t]
[(pair? t)
(cons (loop (car t))
(loop (cdr t)))]
[(and (Var? t)
(subst-ref s t #false))]
[else t])))
;; Returns a substitution α such that t1α = t2, if it exists, #false otherwise.
;;
;; term? term? subst? -> (or/c #false subst?)
(define (left-unify t1 t2 [subst (make-subst)])
(cond/else
[(eq? t1 t2) ; takes care of both null?
subst]
[(and (pair? t1) (pair? t2))
(define new-subst (left-unify (car t1) (car t2) subst))
(and new-subst
(left-unify (cdr t1) (cdr t2) new-subst))]
[(term==? t1 t2) subst] ; To do: This is costly
[(not (Var? t1)) #false]
#:else
(define t1b (subst-ref subst t1 #false))
#:cond
[t1b (and (term==? t1b t2) subst)]
; This ensures that vars(C2) ∩ dom(σ) = ø:
; if var, t1 must not occur in rhs of subst
; and any lhs of subst and t1 must not occur in t2
[(or (occurs? t1 t2)
(for/or ([(var-name val) (in-dict subst)])
(or (occurs? t1 val)
(occurs? (Var var-name) t2))))
#false]
#:else
(subst-set subst t1 t2)))))
;; Mutable substitutions
(define-left-subst+unify left-substitute left-unify make-subst subst-ref subst-set!)
;; Immutable substitutions
(define-left-subst+unify left-substitute/assoc left-unify/assoc make-imsubst imsubst-ref imsubst-set)
;; Returns #true if `pat` left-unifies with any subterm of `t`.
;;
;; term? term? -> (or/c #false term?)
(define (left-unify-anywhere pat t)
(let loop ([t t])
(cond [(left-unify pat t)]
[(list? t) (ormap loop t)]
[else #false])))
;; Returns #true if `(filt tt)` is true for any subterm `tt` of `t`.
;;
;; (term? -> boolean?) term? -> boolean?
(define (match-anywhere filt t)
(let loop ([t t])
(cond [(filt t)]
[(list? t) (ormap loop (rest t))]
[else #false])))