forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracer.py
324 lines (280 loc) · 12.8 KB
/
tracer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module for the Jax tracer functionality for tags."""
import functools
from typing import Any, Callable, Sequence, Tuple
import jax
from jax import core
from jax import util as jax_util
import jax.numpy as jnp
from kfac_ferminet_alpha import layers_and_loss_tags as tags
from kfac_ferminet_alpha import tag_graph_matcher as tgm
from kfac_ferminet_alpha import utils
_Function = Callable[[Any], Any]
_Loss = tags.LossTag
def extract_tags(
jaxpr: core.Jaxpr
) -> Tuple[Sequence[core.JaxprEqn], Sequence[core.JaxprEqn]]:
"""Extracts all of the tag equations."""
# Loop through equations and evaluate primitives using `bind`
layer_tags = []
loss_tags = []
for eqn in jaxpr.eqns:
if isinstance(eqn.primitive, tags.LossTag):
loss_tags.append(eqn)
elif isinstance(eqn.primitive, tags.LayerTag):
layer_tags.append(eqn)
return tuple(layer_tags), tuple(loss_tags)
def construct_compute_losses_inputs(
jaxpr: core.Jaxpr,
consts: Tuple[Any],
num_losses: int,
primals: Any,
params_index: int) -> Callable[[Any], Sequence[Sequence[jnp.ndarray]]]:
"""Constructs a function that computes all of the inputs to all losses."""
primals_ = list(primals)
def forward_compute_losses(
params_primals: Any,
) -> Sequence[Sequence[jnp.ndarray]]:
primals_[params_index] = params_primals
flat_args = jax.tree_flatten(primals_)[0]
# Mapping from variable -> value
env = dict()
read = functools.partial(tgm.read_env, env)
write = functools.partial(tgm.write_env, env)
# Bind args and consts to environment
jax_util.safe_map(write, jaxpr.invars, flat_args)
jax_util.safe_map(write, jaxpr.constvars, consts)
# Loop through equations and evaluate primitives using `bind`
losses_so_far = 0
loss_tags = []
for eqn in jaxpr.eqns:
tgm.evaluate_eqn(eqn, jax_util.safe_map(read, eqn.invars), write)
if isinstance(eqn.primitive, tags.LossTag):
loss_tags.append(eqn)
losses_so_far += 1
if num_losses is not None and losses_so_far == num_losses:
break
return tuple(tuple(read(v) for v in tag.invars) for tag in loss_tags)
# return tuple(jax_util.safe_map(read, tag.invars) for tag in loss_tags)
return forward_compute_losses
# We know when `.primitive` will be either a `LossTag` or a `LayerTag`, however
# pytype cannot infer its subclass, so we need to unbox it.
def _unbox_loss_tag(jaxpr_eqn: core.JaxprEqn) -> tags.LossTag:
assert isinstance(jaxpr_eqn.primitive, tags.LossTag)
return jaxpr_eqn.primitive
def _unbox_layer_tag(jaxpr_eqn: core.JaxprEqn) -> tags.LayerTag:
assert isinstance(jaxpr_eqn.primitive, tags.LayerTag)
return jaxpr_eqn.primitive
def trace_losses_matrix_vector_vjp(tagged_func: _Function,
params_index: int = 0):
"""Returns the Jacobian-transposed vector product (backward mode) function in equivalent form to jax.vjp."""
def vjp(*primals):
typed_jaxpr = jax.make_jaxpr(tagged_func)(*primals)
jaxpr, consts = typed_jaxpr.jaxpr, typed_jaxpr.literals
_, loss_jaxpr_eqns = extract_tags(jaxpr)
n = len(loss_jaxpr_eqns)
losses_func = construct_compute_losses_inputs(
jaxpr, consts, n, primals, params_index)
losses_inputs, full_vjp_func = jax.vjp(losses_func, primals[params_index])
losses = []
for jaxpr_eqn, inputs in zip(loss_jaxpr_eqns, losses_inputs):
loss_tag = _unbox_loss_tag(jaxpr_eqn)
losses.append(loss_tag.loss(*inputs, weight=jaxpr_eqn.params["weight"]))
losses = tuple(losses)
def vjp_func(tangents):
flat_tangents = jax.tree_flatten(tangents)[0]
loss_invars = []
loss_targets = []
for jaxpr_eqn, inputs in zip(loss_jaxpr_eqns, losses_inputs):
num_inputs = _unbox_loss_tag(jaxpr_eqn).num_inputs
loss_invars.append(tuple(jaxpr_eqn.invars[:num_inputs]))
loss_targets.append(inputs[num_inputs:])
treedef = jax.tree_structure(loss_invars)
tangents = jax.tree_unflatten(treedef, flat_tangents)
# Since the losses could also take and targets as inputs and we don't want
# this function to computes vjp w.r.t to those (e.g. the user should not
# be providing tangent vectors for the targets, only for inputs) we have
# to manually fill in these "extra" tangents with zeros.
targets_tangents = jax.tree_map(jnp.zeros_like, loss_targets)
tangents = tuple(ti + tti for ti, tti in zip(tangents, targets_tangents))
input_tangents = full_vjp_func(tangents)[0]
return input_tangents,
return losses, vjp_func
return vjp
def trace_losses_matrix_vector_jvp(
tagged_func: _Function,
params_index: int = 0):
"""Returns the Jacobian vector product (forward mode) function in equivalent form to jax.jvp."""
def jvp(primals, params_tangents):
typed_jaxpr = jax.make_jaxpr(tagged_func)(*primals)
jaxpr, consts = typed_jaxpr.jaxpr, typed_jaxpr.literals
_, loss_tags = extract_tags(jaxpr)
n = len(loss_tags)
losses_func = construct_compute_losses_inputs(jaxpr, consts, n,
primals, params_index)
primals = (primals[params_index],)
tangents = (params_tangents,)
(primals_out, tangents_out) = jax.jvp(losses_func, primals, tangents)
tangents_out = tuple(tuple(t[:tag.primitive.num_inputs])
for t, tag in zip(tangents_out, loss_tags))
losses = tuple(tag.primitive.loss(*inputs, weight=tag.params["weight"])
for tag, inputs in zip(loss_tags, primals_out))
return losses, tangents_out
return jvp
def trace_losses_matrix_vector_hvp(tagged_func, params_index=0):
"""Returns the Hessian vector product function of **the tagged losses**, rather than the output value of `tagged_func`."""
# The function uses backward-over-forward mode.
def hvp(primals, params_tangents):
typed_jaxpr = jax.make_jaxpr(tagged_func)(*primals)
jaxpr, consts = typed_jaxpr.jaxpr, typed_jaxpr.literals
_, loss_tags = extract_tags(jaxpr)
n = len(loss_tags)
losses_func = construct_compute_losses_inputs(
jaxpr, consts, n, primals, params_index)
def losses_sum(param_primals):
loss_inputs = losses_func(param_primals)
losses = [
_unbox_loss_tag(jaxpr_eqn).loss(
*inputs, weight=jaxpr_eqn.params["weight"])
for jaxpr_eqn, inputs in zip(loss_tags, loss_inputs)
]
# This computes the sum of losses evaluated. Makes it easier as we can
# now use jax.grad rather than jax.vjp for taking derivatives.
return sum(jnp.sum(loss.evaluate(None)) for loss in losses)
def grads_times_tangents(params_primals):
grads = jax.grad(losses_sum)(params_primals)
return utils.inner_product(grads, params_tangents)
return jax.grad(grads_times_tangents)(primals[params_index])
return hvp
def trace_estimator_vjp(tagged_func: _Function) -> _Function:
"""Creates the function needed for an estimator of curvature matrices.
Args:
tagged_func: An function that has been annotated with tags both for layers
and losses.
Returns:
A function with the same signatures as `tagged_func`, which when provided
with inputs returns two things:
1. The instances of all losses objected that are tagged.
2. A second function, which when provide with tangent vectors for each
of the loss instances' parameters, returns for every tagged layer a
dictionary containing the following elements:
inputs - The primal values of the inputs to the layer.
outputs - The primal values of the outputs to the layer.
params - The primal values of the layer.
inputs_tangent - The tangent value of layer, given the provided
tangents of the losses.
inputs_tangent - The tangent value of layer, given the provided
tangents of the losses.
inputs_tangent - The tangent value of layer, given the provided
tangents of the losses.
"""
def full_vjp_func(func_args):
# Trace the tagged function
typed_jaxpr = jax.make_jaxpr(tagged_func)(*func_args)
jaxpr, consts = typed_jaxpr.jaxpr, typed_jaxpr.literals
layer_tags, loss_tags = extract_tags(jaxpr)
layer_vars_flat = jax.tree_flatten([tag.invars for tag in layer_tags])[0]
layer_input_vars = tuple(set(layer_vars_flat))
def forward():
own_func_args = func_args
# Mapping from variable -> value
env = dict()
read = functools.partial(tgm.read_env, env)
write = functools.partial(tgm.write_env, env)
# Bind args and consts to environment
jax_util.safe_map(write, jaxpr.invars, jax.tree_flatten(own_func_args)[0])
jax_util.safe_map(write, jaxpr.constvars, consts)
# Loop through equations and evaluate primitives using `bind`
num_losses_passed = 0
for eqn in jaxpr.eqns:
tgm.evaluate_eqn(eqn, jax_util.safe_map(read, eqn.invars), write)
if isinstance(eqn.primitive, tags.LossTag):
num_losses_passed += 1
if num_losses_passed == len(loss_tags):
break
if num_losses_passed != len(loss_tags):
raise ValueError("This should be unreachable.")
return jax_util.safe_map(read, layer_input_vars)
def forward_aux(aux):
own_func_args = func_args
# Mapping from variable -> value
env = dict()
read = functools.partial(tgm.read_env, env)
def write(var, val):
if not isinstance(var, jax.core.Literal):
val = val + aux[var] if var in aux else val
env[var] = val
# Bind args and consts to environment
jax_util.safe_map(write, jaxpr.invars, jax.tree_flatten(own_func_args)[0])
jax_util.safe_map(write, jaxpr.constvars, consts)
# Loop through equations and evaluate primitives using `bind`
num_losses_passed = 0
losses_inputs_values = []
losses_kwargs_values = []
for eqn in jaxpr.eqns:
input_values = jax_util.safe_map(read, eqn.invars)
tgm.evaluate_eqn(eqn, input_values, write)
if isinstance(eqn.primitive, tags.LossTag):
loss = eqn.primitive.loss(*input_values, weight=eqn.params["weight"])
losses_inputs_values.append(loss.inputs)
losses_kwargs_values.append(dict(
targets=loss.targets,
weight=eqn.params["weight"]
))
num_losses_passed += 1
if num_losses_passed == len(loss_tags):
break
if num_losses_passed != len(loss_tags):
raise ValueError("This should be unreachable.")
# Read the inputs to the loss functions, but also return the target values
return tuple(losses_inputs_values), tuple(losses_kwargs_values)
layer_input_values = forward()
primals_dict = dict(zip(layer_input_vars, layer_input_values))
primals_dict.update(zip(jaxpr.invars, jax.tree_flatten(func_args)[0]))
aux_values = jax.tree_map(jnp.zeros_like, layer_input_values)
aux_dict = dict(zip(layer_input_vars, aux_values))
losses_args, aux_vjp, losses_kwargs = jax.vjp(forward_aux, aux_dict,
has_aux=True)
losses = tuple(tag.primitive.loss(*inputs, **kwargs)
for tag, inputs, kwargs in
zip(loss_tags, losses_args, losses_kwargs))
def vjp_func(tangents):
all_tangents = aux_vjp(tangents)
tangents_dict, inputs_tangents = all_tangents[0], all_tangents[1:]
inputs_tangents = jax.tree_flatten(inputs_tangents)[0]
tangents_dict.update(zip(jaxpr.invars, inputs_tangents))
read_primals = functools.partial(tgm.read_env, primals_dict)
read_tangents = functools.partial(tgm.read_env, tangents_dict)
layers_info = []
for jaxpr_eqn in layer_tags:
layer_tag = _unbox_layer_tag(jaxpr_eqn)
info = dict()
primals = jax_util.safe_map(read_primals, tuple(jaxpr_eqn.invars))
(
info["outputs"],
info["inputs"],
info["params"],
) = layer_tag.split_all_inputs(primals)
tangents = jax_util.safe_map(read_tangents, tuple(jaxpr_eqn.invars))
(
info["outputs_tangent"],
info["inputs_tangent"],
info["params_tangent"],
) = layer_tag.split_all_inputs(tangents)
layers_info.append(info)
return tuple(layers_info)
return losses, vjp_func
return full_vjp_func