forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfge_state.py
121 lines (92 loc) · 3.69 KB
/
fge_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A nice python representation of the underlying FGE state."""
from typing import List, Tuple
import numpy as np
from fusion_tcv import shape
from fusion_tcv import shapes_known
from fusion_tcv import tcv_common
class StopSignalException(Exception): # pylint: disable=g-bad-exception-name
"""This is raised if the FGE environment raises the Stop/Alarm signal."""
pass
class InvalidSolutionError(RuntimeError):
"""This is raised if returned solution is invalid."""
pass
class UnhandledOctaveError(Exception):
"""This is raised if some Octave code raises an unhandled error."""
pass
class FGEState:
"""A nice python representation of the underlying FGE State.
Given that FGE isn't open source, all of these numbers are made up, and only
a sketch of what it could look like.
"""
def __init__(self, num_plasmas):
self._num_plasmas = num_plasmas
@property
def num_plasmas(self) -> int:
return self._num_plasmas # Return 1 for singlet, 2 for droplets.
@property
def rzip_d(self) -> Tuple[List[float], List[float], List[float]]:
"""Returns the R, Z, and Ip for each plasma domain."""
if self.num_plasmas == 1:
return [0.9], [0], [-120000]
else:
return [0.9, 0.88], [0.4, -0.4], [-60000, -65000]
def get_coil_currents_by_type(self, coil_type) -> np.ndarray:
currents = tcv_common.TCV_ACTION_RANGES.new_random_named_array()
return currents[coil_type] * tcv_common.ENV_COIL_MAX_CURRENTS[coil_type] / 5
def get_lcfs_points(self, domain: int) -> shape.ShapePoints:
del domain # Should be plasma domain specific
return shapes_known.SHAPE_70166_0872.canonical().points
def get_observation_vector(self) -> np.ndarray:
return tcv_common.TCV_MEASUREMENT_RANGES.new_random_named_array().array
@property
def elongation(self) -> List[float]:
return [1.4] * self.num_plasmas
@property
def triangularity(self) -> List[float]:
return [0.25] * self.num_plasmas
@property
def radius(self) -> List[float]:
return [0.23] * self.num_plasmas
@property
def limit_point_d(self) -> List[shape.Point]:
return [shape.Point(tcv_common.INNER_LIMITER_R, 0.2)] * self.num_plasmas
@property
def is_diverted_d(self) -> List[bool]:
return [False] * self.num_plasmas
@property
def x_points(self) -> shape.ShapePoints:
return []
@property
def flux(self) -> np.ndarray:
"""Return the flux at the grid coordinates."""
return np.random.random((len(self.z_coordinates), len(self.r_coordinates)))
@property
def magnetic_axis_flux_strength(self) -> float:
"""The magnetic flux at the center of the plasma."""
return 2
@property
def lcfs_flux_strength(self) -> float:
"""The flux at the LCFS."""
return 1
@property
def r_coordinates(self) -> np.ndarray:
"""The radial coordinates of the simulation."""
return np.arange(tcv_common.INNER_LIMITER_R, tcv_common.OUTER_LIMITER_R,
tcv_common.LIMITER_WIDTH / 10) # Made up grid resolution.
@property
def z_coordinates(self):
"""The vertical coordinates of the simulation."""
return np.arange(-0.75, 0.75, 1.5 / 30) # Made up numbers.