forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_module.py
516 lines (449 loc) · 20.3 KB
/
attention_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TransformerBlock and MultiheadAttention modules used in the paper.
"Effective gene expression prediction from sequence by integrating long-range
interactions"
Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3,
Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1,
Pushmeet Kohli1, David R. Kelley2*
1 DeepMind, London, UK
2 Calico Life Sciences, South San Francisco, CA, USA
3 Google, Tokyo, Japan
4 These authors contributed equally.
Example:
```
mha = MultiheadAttention(
value_size=96,
key_size=64,
num_heads=8,
relative_position_functions=['positional_features_sin_cos'])
mha(tf.ones((2, 1024, 96*8)), is_training=True)
# Transformer block as used in the paper
transformer_block = TransformerBlock(
channels=96 * 8,
dropout_rate=0.4,
attention_kwargs=dict(
value_size=96,
key_size=64,
num_heads=8,
relative_positions=True,
relative_position_symmetric=False,
num_relative_position_features=None,
relative_position_functions=['positional_features_exponential',
'positional_features_central_mask',
'positional_features_gamma'],
positional_dropout_rate=0.01,
attention_dropout_rate=0.05,
)
)
transformer_block(tf.ones((2, 1024, 96*8)), is_training=True)
```
"""
from typing import Any, Dict, List, Optional
import numpy as np
import sonnet as snt
import tensorflow as tf
class TransformerBlock(snt.Module):
"""Full transformer module block."""
def __init__(
self,
channels: int,
dropout_rate: float,
attention_kwargs: Dict[str, Any],
name: str = 'transformer_block',
):
super().__init__(name=name)
self.mha_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True)
self.mha = MultiheadAttention(**attention_kwargs)
self.mha_dropout = snt.Dropout(dropout_rate)
self.mlp_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True)
self.mlp_linear1 = snt.Linear(channels * 2)
self.mlp_dropout1 = snt.Dropout(dropout_rate)
self.mlp_linear2 = snt.Linear(channels)
self.mlp_dropout2 = snt.Dropout(dropout_rate)
def __call__(self, inputs: tf.Tensor, is_training: bool) -> tf.Tensor:
x = self.mha_ln(inputs)
x = self.mha(x, is_training=is_training)
x = self.mha_dropout(x, is_training=is_training)
x += inputs # Residual
mha_output = x
# MLP.
x = self.mlp_ln(mha_output)
x = self.mlp_linear1(x)
x = self.mlp_dropout1(x, is_training=is_training)
x = tf.nn.relu(x)
x = self.mlp_linear2(x)
x = self.mlp_dropout2(x, is_training=is_training)
return x + mha_output
class MultiheadAttention(snt.Module):
"""Multi-head attention."""
def __init__(self,
value_size: int,
key_size: int,
num_heads: int,
scaling: bool = True,
attention_dropout_rate: float = 0.1,
relative_positions: bool = False,
relative_position_symmetric: bool = False,
relative_position_functions: Optional[List[str]] = None,
num_relative_position_features: Optional[int] = None,
positional_dropout_rate: float = 0.1,
zero_initialize: bool = True,
initializer: Optional[snt.initializers.Initializer] = None,
name: str = None):
"""Creates a MultiheadAttention module.
Args:
value_size: The size of each value embedding per head.
key_size: The size of each key and query embedding per head.
num_heads: The number of independent queries per timestep.
scaling: Whether to scale the attention logits.
attention_dropout_rate: Dropout rate for attention logits.
relative_positions: Whether to use TransformerXL style relative attention.
relative_position_symmetric: If True, the symmetric version of basis
functions will be used. If False, a symmetric and asymmetric versions
will be use.
relative_position_functions: List of function names used for relative
positional biases.
num_relative_position_features: Number of relative positional features
to compute. If None, `value_size * num_heads` is used.
positional_dropout_rate: Dropout rate for the positional encodings if
relative positions are used.
zero_initialize: if True, the final linear layer will be 0 initialized.
initializer: Initializer for the projection layers. If unspecified,
VarianceScaling is used with scale = 2.0.
name: Name of module.
"""
super().__init__(name=name)
self._value_size = value_size
self._key_size = key_size
self._num_heads = num_heads
self._attention_dropout_rate = attention_dropout_rate
self._scaling = scaling
self._relative_positions = relative_positions
self._relative_position_symmetric = relative_position_symmetric
self._relative_position_functions = relative_position_functions
if num_relative_position_features is None:
# num_relative_position_features needs to be divisible by the number of
# relative positional functions *2 (for symmetric & asymmetric version).
divisible_by = 2 * len(self._relative_position_functions)
self._num_relative_position_features = (
(self._value_size // divisible_by) * divisible_by)
else:
self._num_relative_position_features = num_relative_position_features
self._positional_dropout_rate = positional_dropout_rate
self._initializer = initializer
if self._initializer is None:
self._initializer = snt.initializers.VarianceScaling(scale=2.0)
key_proj_size = self._key_size * self._num_heads
embedding_size = self._value_size * self._num_heads
self._q_layer = snt.Linear(
key_proj_size,
name='q_layer',
with_bias=False,
w_init=self._initializer)
self._k_layer = snt.Linear(
key_proj_size,
name='k_layer',
with_bias=False,
w_init=self._initializer)
self._v_layer = snt.Linear(
embedding_size,
name='v_layer',
with_bias=False,
w_init=self._initializer)
w_init = snt.initializers.Zeros() if zero_initialize else self._initializer
self._embedding_layer = snt.Linear(
embedding_size,
name='embedding_layer',
w_init=w_init)
# Create additional layers if using relative positions.
if self._relative_positions:
self._r_k_layer = snt.Linear(
key_proj_size,
name='r_k_layer',
with_bias=False,
w_init=self._initializer)
self._r_w_bias = tf.Variable(
self._initializer([1, self._num_heads, 1, self._key_size],
dtype=tf.float32),
name='r_w_bias')
self._r_r_bias = tf.Variable(
self._initializer([1, self._num_heads, 1, self._key_size],
dtype=tf.float32),
name='r_r_bias')
def _multihead_output(self, linear, inputs):
"""Applies a standard linear to inputs and returns multihead output."""
output = snt.BatchApply(linear)(inputs) # [B, T, H * KV]
num_kv_channels = output.shape[-1] // self._num_heads
# Split H * Channels into separate axes.
output = snt.reshape(output,
output_shape=[-1, self._num_heads, num_kv_channels])
# [B, T, H, KV] -> [B, H, T, KV]
return tf.transpose(output, [0, 2, 1, 3])
def __call__(self,
inputs,
is_training=False):
# Initialise the projection layers.
embedding_size = self._value_size * self._num_heads
seq_len = inputs.shape[1]
# Compute q, k and v as multi-headed projections of the inputs.
q = self._multihead_output(self._q_layer, inputs) # [B, H, T, K]
k = self._multihead_output(self._k_layer, inputs) # [B, H, T, K]
v = self._multihead_output(self._v_layer, inputs) # [B, H, T, V]
# Scale the query by the square-root of key size.
if self._scaling:
q *= self._key_size**-0.5
if self._relative_positions:
# For relative positions, we project positions to form relative keys.
distances = tf.range(-seq_len + 1, seq_len, dtype=tf.float32)[tf.newaxis]
positional_encodings = positional_features_all(
positions=distances,
feature_size=self._num_relative_position_features,
seq_length=seq_len,
feature_functions=self._relative_position_functions,
symmetric=self._relative_position_symmetric)
# [1, 2T-1, Cr]
if is_training:
positional_encodings = tf.nn.dropout(
positional_encodings, rate=self._positional_dropout_rate)
# [1, H, 2T-1, K]
r_k = self._multihead_output(self._r_k_layer, positional_encodings)
# Add shifted relative logits to content logits.
# [B, H, T', T]
content_logits = tf.matmul(q + self._r_w_bias, k, transpose_b=True)
# [B, H, T', 2T-1]
relative_logits = tf.matmul(
q + self._r_r_bias, r_k, transpose_b=True)
# [B, H, T', T]
relative_logits = relative_shift(relative_logits)
logits = content_logits + relative_logits
else:
# [B, H, T', T]
logits = tf.matmul(q, k, transpose_b=True)
weights = tf.nn.softmax(logits)
# Dropout on the attention weights.
if is_training:
weights = tf.nn.dropout(weights, rate=self._attention_dropout_rate)
# Transpose and reshape the output.
output = tf.matmul(weights, v) # [B, H, T', V]
output_transpose = tf.transpose(output, [0, 2, 1, 3]) # [B, T', H, V]
# Final linear layer.
attended_inputs = snt.reshape(
output_transpose, output_shape=[embedding_size], preserve_dims=2)
output = self._embedding_layer(attended_inputs)
return output
def relative_shift(x):
"""Shift the relative logits like in TransformerXL."""
# We prepend zeros on the final timescale dimension.
to_pad = tf.zeros_like(x[..., :1])
x = tf.concat([to_pad, x], -1)
_, num_heads, t1, t2 = x.shape
x = tf.reshape(x, [-1, num_heads, t2, t1])
x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1])
x = tf.reshape(x, [-1, num_heads, t1, t2 - 1])
x = tf.slice(x, [0, 0, 0, 0], [-1, -1, -1, (t2 + 1) // 2])
return x
# Available feature functions:
def get_positional_feature_function(name):
"""Returns positional feature functions."""
available = {
'positional_features_exponential': positional_features_exponential,
'positional_features_central_mask': positional_features_central_mask,
'positional_features_gamma': positional_features_gamma,
'positional_features_cosine': positional_features_cosine,
'positional_features_linear_masks': positional_features_linear_masks,
'positional_features_sin_cos': positional_features_sin_cos,
}
if name not in available:
raise ValueError(f'Function {name} not available in {available.keys()}')
return available[name]
def positional_features_all(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None,
feature_functions: Optional[List[str]] = None,
symmetric=False):
"""Compute relative positional encodings/features.
Each positional feature function will compute/provide the same fraction of
features, making up the total of feature_size.
Args:
positions: Tensor of relative positions of arbitrary shape.
feature_size: Total number of basis functions.
seq_length: Sequence length denoting the characteristic length that
the individual positional features can use. This is required since the
parametrization of the input features should be independent of `positions`
while it could still require to use the total number of features.
bin_size: Bin sized used to partition the sequence. This can be used to
compute features on the absolute scale relative to the genome.
feature_functions: List of different feature functions to use. Each function
will take as argument: positions, sequence length and number of features
to compute.
symmetric: If True, the resulting features will be symmetric across the
relative position of 0 (i.e. only absolute value of positions will
matter). If false, then both the symmetric and asymmetric version
(symmetric multiplied by sign(positions)) of the features will be used.
Returns:
Tensor of shape: `positions.shape + (feature_size,)`.
"""
if feature_functions is None:
feature_functions = ['positional_features_exponential',
'positional_features_central_mask',
'positional_features_gamma']
num_components = len(feature_functions) # 1 per each basis function
if not symmetric:
num_components = 2 * num_components
# For now, we do not allow odd sized embeddings.
if feature_size % num_components != 0:
raise ValueError(
f'feature_size has to be divisible by {num_components}')
feature_functions = [get_positional_feature_function(f)
for f in feature_functions]
num_basis_per_class = feature_size // num_components
embeddings = tf.concat([f(tf.abs(positions), num_basis_per_class,
seq_length, bin_size)
for f in feature_functions],
axis=-1)
if not symmetric:
embeddings = tf.concat([embeddings,
tf.sign(positions)[..., tf.newaxis] * embeddings],
axis=-1)
tf.TensorShape(embeddings.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return embeddings
def _prepend_dims(x, num_dims):
return tf.reshape(x, shape=[1] * num_dims + x.shape)
def positional_features_exponential(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None,
min_half_life: Optional[float] = 3.0):
"""Create exponentially decaying positional weights.
Args:
positions: Position tensor (arbitrary shape).
feature_size: Number of basis functions to use.
seq_length: Sequence length.
bin_size: (unused). See `positional_features_all`.
min_half_life: Smallest exponential half life in the grid of half lives.
Returns:
A Tensor with shape [2 * seq_length - 1, feature_size].
"""
del bin_size # Unused.
if seq_length is None:
seq_length = tf.reduce_max(tf.abs(positions)) + 1
# Grid of half lifes from [3, seq_length / 2] with feature_size
# distributed on the log scale.
seq_length = tf.cast(seq_length, dtype=tf.float32)
max_range = tf.math.log(seq_length) / tf.math.log(2.0)
half_life = tf.pow(2.0, tf.linspace(min_half_life, max_range, feature_size))
half_life = _prepend_dims(half_life, positions.shape.rank)
positions = tf.abs(positions)
outputs = tf.exp(-tf.math.log(2.0) / half_life * positions[..., tf.newaxis])
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs
def positional_features_central_mask(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None):
"""Positional features using a central mask (allow only central features)."""
del seq_length # Unused.
del bin_size # Unused.
center_widths = tf.pow(2.0, tf.range(1, feature_size + 1, dtype=tf.float32))
center_widths = center_widths - 1
center_widths = _prepend_dims(center_widths, positions.shape.rank)
outputs = tf.cast(center_widths > tf.abs(positions)[..., tf.newaxis],
tf.float32)
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs
def gamma_pdf(x, concentration, rate):
"""Gamma probability distribution function: p(x|concentration, rate)."""
log_unnormalized_prob = tf.math.xlogy(concentration - 1., x) - rate * x
log_normalization = (tf.math.lgamma(concentration) -
concentration * tf.math.log(rate))
return tf.exp(log_unnormalized_prob - log_normalization)
def positional_features_gamma(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None,
stddev=None,
start_mean=None):
"""Positional features computed using the gamma distributions."""
del bin_size # Unused.
if seq_length is None:
seq_length = tf.reduce_max(tf.abs(positions)) + 1
if stddev is None:
stddev = seq_length / (2 * feature_size)
if start_mean is None:
start_mean = seq_length / feature_size
mean = tf.linspace(start_mean, seq_length, num=feature_size)
mean = _prepend_dims(mean, positions.shape.rank)
concentration = (mean / stddev)**2
rate = mean / stddev**2
probabilities = gamma_pdf(
tf.abs(tf.cast(positions, dtype=tf.float32))[..., tf.newaxis],
concentration, rate)
probabilities += 1e-8 # To ensure numerical stability.
outputs = probabilities / tf.reduce_max(probabilities,
axis=1, keepdims=True)
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs
def positional_features_cosine(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None):
"""Cosine positional features."""
del bin_size # Unused.
del seq_length # Unused.
periodicity = 1.25 * tf.pow(2.0, tf.range(0, feature_size, dtype=tf.float32))
periodicity = _prepend_dims(periodicity, positions.shape.rank)
outputs = tf.math.cos(2 * np.pi * positions[..., tf.newaxis] / periodicity)
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs
def positional_features_linear_masks(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None):
"""Exponentially increasing point focuses."""
del bin_size # Unused.
del seq_length # Unused.
distances = tf.range(0, feature_size, dtype=tf.float32)
distances = _prepend_dims(distances, positions.shape.rank)
outputs = tf.cast(distances == tf.abs(positions[..., tf.newaxis]),
dtype=tf.float32)
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs
def positional_features_sin_cos(positions: tf.Tensor,
feature_size: int,
seq_length: Optional[int] = None,
bin_size: Optional[int] = None,
max_time=10000.0):
"""Sine/cosine positional encodings."""
del bin_size # Unused.
del seq_length # Unused.
if feature_size % 2 != 0:
raise ValueError('feature_size needs to be divisible by 2.')
i = tf.range(0, feature_size, 2, dtype=tf.float32)
i = _prepend_dims(i, positions.shape.rank)
# Concat sines and cosines and return.
outputs = tf.concat([
tf.sin(positions[..., tf.newaxis] / max_time**(i / feature_size)),
tf.cos(positions[..., tf.newaxis] / max_time**(i / feature_size))], -1)
tf.TensorShape(outputs.shape).assert_is_compatible_with(
positions.shape + [feature_size])
return outputs