-
Notifications
You must be signed in to change notification settings - Fork 2
/
tgcn.py
75 lines (62 loc) · 2.72 KB
/
tgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
#import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn import RNNCell
from utils import calculate_laplacian
class tgcnCell(RNNCell):
"""Temporal Graph Convolutional Network """
def call(self, inputs, **kwargs):
pass
def __init__(self, num_units, adj, num_nodes, input_size=None,
act=tf.nn.tanh, reuse=None):
super(tgcnCell, self).__init__(_reuse=reuse)
self._act = act
self._nodes = num_nodes
self._units = num_units
self._adj = []
self._adj.append(calculate_laplacian(adj))
@property
def state_size(self):
return self._nodes * self._units
@property
def output_size(self):
return self._units
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(scope or "tgcn"):
with tf.variable_scope("gates"):
value = tf.nn.sigmoid(
self._gc(inputs, state, 2 * self._units, bias=1.0, scope=scope))
r, u = tf.split(value=value, num_or_size_splits=2, axis=1)
with tf.variable_scope("candidate"):
r_state = r * state
c = self._act(self._gc(inputs, r_state, self._units, scope=scope))
new_h = u * state + (1 - u) * c
return new_h, new_h
def _gc(self, inputs, state, output_size, bias=0.0, scope=None):
## inputs:(-1,num_nodes)
inputs = tf.expand_dims(inputs, 2)
## state:(batch,num_node,gru_units)
state = tf.reshape(state, (-1, self._nodes, self._units))
## concat
x_s = tf.concat([inputs, state], axis=2)
input_size = x_s.get_shape()[2].value
## (num_node,input_size,-1)
x0 = tf.transpose(x_s, perm=[1, 2, 0])
x0 = tf.reshape(x0, shape=[self._nodes, -1])
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
for m in self._adj:
x1 = tf.sparse_tensor_dense_matmul(m, x0)
# print(x1)
x = tf.reshape(x1, shape=[self._nodes, input_size,-1])
x = tf.transpose(x,perm=[2,0,1])
x = tf.reshape(x, shape=[-1, input_size])
weights = tf.get_variable(
'weights', [input_size, output_size], initializer=tf.contrib.layers.xavier_initializer())
x = tf.matmul(x, weights) # (batch_size * self._nodes, output_size)
biases = tf.get_variable(
"biases", [output_size], initializer=tf.constant_initializer(bias, dtype=tf.float32))
x = tf.nn.bias_add(x, biases)
x = tf.reshape(x, shape=[-1, self._nodes, output_size])
x = tf.reshape(x, shape=[-1, self._nodes * output_size])
return x