Def. Directional Derivative
The directional derivative of function
$f:\mathbb{R}^n\rightarrow \mathbb{R}$ in the direction$u$ is $$ \nabla_uf(x)=\mathop{\mathrm{lim}}\limits_{h\rightarrow 0}\frac{f(x+hu)-f(x)}{h} $$
- When
$u$ is the$i$ -th standard unit vector$e_i$ , then$\nabla_uf(x)=f_i'(x)=\frac{\partial f(x)}{\partial x_i}$ . - For any
$n$ -dimensional vector$u$ , the directional derivative of$f$ in the direction of$u$ can be represented as$\nabla_uf(x)=\sum_{i=1}^nf_i'(x)\cdot u_i$ .- Proof.$\Rightarrow \begin{array}{l} \text{ let } g(h)=f(x+hu) \ \nabla_uf(x)=g'(0)=\mathop{\mathrm{lim}}\limits_{h\rightarrow 0}\frac{f(x+hu)-g(0)}{h} \ \because g'(h)=\sum_{i=1}^n f_i'(x)\frac{d}{dh}(x_i+hu_i)=\sum_{i=1}^nf_i'(x)u_i \ \text{let }h=0\ \therefore \nabla_uf(x)=\sum_{i=1}^nf_i'(x)u_i \end{array}$
Def. Gradient
The gradient of
$f$ is a vector function$\nabla f:\mathbb{R}^n\rightarrow \mathbb{R}^n$ defined by $$ \begin{aligned} & \nabla f(x)=\sum_{i=1}^n\frac{\partial f}{\partial x_i}e_i \ \Rightarrow & \nabla f(x)=\left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}\right] \end{aligned} $$
-
$\nabla_uf(x)=\nabla f(x)\cdot u=\vert\vert\nabla f(x)\vert\vert \mathrm{cos}\ a$ Where$u$ is a unit vector. - When
$u=\nabla f(x)$ such that$a=0$ , we have the maximum directional derivative of$f$ .
- The derivative of
$f: \mathbb{R}^{m\times n}\rightarrow\mathbb{R}$ with respect to$A$ is defined as:
Def.
$trA=\sum_{i=1}^nA_ii$
$trABCD=trDABC=trCDAB=trBCDA$ $trA=trA^T,tr(A+B)=trA+trB,tr(aA)=a\cdot trA$ $\nabla_AtrAB=B^T,\nabla_{A^T}f(A)=(\nabla_Af(A))^T$ $\nabla_AtrABA^TC=CAB+C^TAB^T,\nabla_A\vert A\vert=\vert A\vert(A^{-1})^T$ - Funky trace derivative
$\nabla_{A^T}trABA^TC=B^TA^TC^T+BA^TC$
$$ {\displaystyle G(x_{0})={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{1},\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{1},\partial x_{n}}}\\{\frac {\partial ^{2}f}{\partial x_{2},\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{2},\partial x_{n}}}\\\vdots &\vdots &\ddots &\vdots \\{\frac {\partial ^{2}f}{\partial x_{n},\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{n},\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}{x{0}},} $$
$H(f)=J(\nabla f)$