forked from AyushKaul/Musical-Note-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAudio_Processing.py
112 lines (85 loc) · 3.33 KB
/
Audio_Processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#############################################################################
# #
# Musical Note Identification #
# #
#############################################################################
import numpy as np
import wave
import struct
sampling_freq = 44100 #Sampling frequency of audio signal
window = 2205 #Size of window to be used for detecting silence
threshold = 600 #threshold value
dft = [] #array to store dtf value
start = [] #array holding start indices of each note
end = [] #array holding end indices of each note
Identified_Notes = [] #list of identified notes
array = [1046.50, 1174.66, 1318.51, 1396.91, 1567.98, 1760.00, 1975.53,
2093.00, 2349.32, 2637.02, 2793.83, 3135.96, 3520.00, 3951.07,
4186.01, 4698.63, 5274.04, 5587.65, 6271.93, 7040.00, 7902.13]
notes = ['C6', 'D6', 'E6', 'F6', 'G6', 'A6', 'B6',
'C7', 'D7', 'E7', 'F7', 'G7', 'A7', 'B7',
'C8', 'D8', 'E8', 'F8', 'G8', 'A8', 'B8']
def play(sound_file):
Identified_Notes[:] = [] #Clear the list every time play() is called
start[:] = []
end[:] = []
file_length = sound_file.getnframes() #Decode Audio File
sound = np.zeros(file_length)
for i in range(file_length):
data = sound_file.readframes(1)
data = struct.unpack("<h", data)
sound[i] = int(data[0])
sound = np.divide(sound, float(2**15))
sound_square = np.square(sound) #square each element of sound[]
i = 0
j = 0
f = 0
t = 0
while(i<(file_length) - window):
s = 0.00
j = 0
if(t==0):
start.append(i) #store start point of note
f = 0
t = 1
while(j<=window):
s = s + sound_square[i + j]
j = j + 1
if(s<=threshold):
if(f==0):
end.append(i) #store end point of note
f = 1
else:
if(f==1):
f = 0
t = 0
i = i + window
i = 0
while(i<len(end)): #Identify Notes
dft = np.array(np.fft.fft(sound[start[i]:end[i]])) # applying fourier transform function
dft = np.argsort(dft)
if(dft[0]>dft[-1] and dft[1]>dft[-1]):
i_max = dft[-1]
elif(dft[1]>dft[0] and dft[-1]>dft[0]):
i_max = dft[0]
else:
i_max = dft[1]
fr = (i_max*sampling_freq)/((end[i]) - (start[i])) # claculating frequency
idx = (np.abs(array-fr)).argmin()
Identified_Notes.append(notes[idx])
i = i + 1
print(Identified_Notes)
############################## Read Audio File #############################
if __name__ == "__main__":
#code for checking output for single audio file
#Reading audio file
sound_file = wave.open('Audio_files/Audio_1.wav', 'r')
#call play() to identify notes
print("Notes in File 1 = ")
play(sound_file)
#code for checking output for remaining all audio files
for file_number in range(2,6):
file_name = "Audio_files/Audio_" + str(file_number) + ".wav"
sound_file = wave.open(file_name)
print("Notes in File " + str(file_number) + " = ")
play(sound_file)