-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathrun.py
284 lines (248 loc) · 9.81 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import argparse
import logging
import os
from glob import glob
import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from marigold import MarigoldPipeline
EXTENSION_LIST = [".jpg", ".jpeg", ".png"]
if "__main__" == __name__:
logging.basicConfig(level=logging.INFO)
# -------------------- Arguments --------------------
parser = argparse.ArgumentParser(
description="Run single-image depth estimation using Marigold."
)
parser.add_argument(
"--checkpoint",
type=str,
default="prs-eth/marigold-lcm-v1-0",
help="Checkpoint path or hub name.",
)
parser.add_argument(
"--input_rgb_dir",
type=str,
required=True,
help="Path to the input image folder.",
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# inference setting
parser.add_argument(
"--denoise_steps",
type=int,
default=None,
help="Diffusion denoising steps, more steps results in higher accuracy but slower inference speed. For the original (DDIM) version, it's recommended to use 10-50 steps, while for LCM 1-4 steps.",
)
parser.add_argument(
"--ensemble_size",
type=int,
default=5,
help="Number of predictions to be ensembled, more inference gives better results but runs slower.",
)
parser.add_argument(
"--half_precision",
"--fp16",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
# resolution setting
parser.add_argument(
"--processing_res",
type=int,
default=None,
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
)
parser.add_argument(
"--output_processing_res",
action="store_true",
help="When input is resized, out put depth at resized operating resolution. Default: False.",
)
parser.add_argument(
"--resample_method",
choices=["bilinear", "bicubic", "nearest"],
default="bilinear",
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
)
# depth map colormap
parser.add_argument(
"--color_map",
type=str,
default="Spectral",
help="Colormap used to render depth predictions.",
)
# other settings
parser.add_argument(
"--seed",
type=int,
default=None,
help="Reproducibility seed. Set to `None` for unseeded inference.",
)
parser.add_argument(
"--batch_size",
type=int,
default=0,
help="Inference batch size. Default: 0 (will be set automatically).",
)
parser.add_argument(
"--apple_silicon",
action="store_true",
help="Flag of running on Apple Silicon.",
)
args = parser.parse_args()
checkpoint_path = args.checkpoint
input_rgb_dir = args.input_rgb_dir
output_dir = args.output_dir
denoise_steps = args.denoise_steps
ensemble_size = args.ensemble_size
if ensemble_size > 15:
logging.warning("Running with large ensemble size will be slow.")
half_precision = args.half_precision
processing_res = args.processing_res
match_input_res = not args.output_processing_res
if 0 == processing_res and match_input_res is False:
logging.warning(
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
)
resample_method = args.resample_method
color_map = args.color_map
seed = args.seed
batch_size = args.batch_size
apple_silicon = args.apple_silicon
if apple_silicon and 0 == batch_size:
batch_size = 1 # set default batchsize
# -------------------- Preparation --------------------
# Output directories
output_dir_color = os.path.join(output_dir, "depth_colored")
output_dir_tif = os.path.join(output_dir, "depth_bw")
output_dir_npy = os.path.join(output_dir, "depth_npy")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_dir_color, exist_ok=True)
os.makedirs(output_dir_tif, exist_ok=True)
os.makedirs(output_dir_npy, exist_ok=True)
logging.info(f"output dir = {output_dir}")
# -------------------- Device --------------------
if apple_silicon:
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device("mps:0")
else:
device = torch.device("cpu")
logging.warning("MPS is not available. Running on CPU will be slow.")
else:
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"device = {device}")
# -------------------- Data --------------------
rgb_filename_list = glob(os.path.join(input_rgb_dir, "*"))
rgb_filename_list = [
f for f in rgb_filename_list if os.path.splitext(f)[1].lower() in EXTENSION_LIST
]
rgb_filename_list = sorted(rgb_filename_list)
n_images = len(rgb_filename_list)
if n_images > 0:
logging.info(f"Found {n_images} images")
else:
logging.error(f"No image found in '{input_rgb_dir}'")
exit(1)
# -------------------- Model --------------------
if half_precision:
dtype = torch.float16
variant = "fp16"
logging.info(
f"Running with half precision ({dtype}), might lead to suboptimal result."
)
else:
dtype = torch.float32
variant = None
pipe: MarigoldPipeline = MarigoldPipeline.from_pretrained(
checkpoint_path, variant=variant, torch_dtype=dtype
)
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
pass # run without xformers
pipe = pipe.to(device)
logging.info(
f"scale_invariant: {pipe.scale_invariant}, shift_invariant: {pipe.shift_invariant}"
)
# Print out config
logging.info(
f"Inference settings: checkpoint = `{checkpoint_path}`, "
f"with denoise_steps = {denoise_steps or pipe.default_denoising_steps}, "
f"ensemble_size = {ensemble_size}, "
f"processing resolution = {processing_res or pipe.default_processing_resolution}, "
f"seed = {seed}; "
f"color_map = {color_map}."
)
# -------------------- Inference and saving --------------------
with torch.no_grad():
os.makedirs(output_dir, exist_ok=True)
for rgb_path in tqdm(rgb_filename_list, desc="Estimating depth", leave=True):
# Read input image
input_image = Image.open(rgb_path)
# Random number generator
if seed is None:
generator = None
else:
generator = torch.Generator(device=device)
generator.manual_seed(seed)
# Predict depth
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
match_input_res=match_input_res,
batch_size=batch_size,
color_map=color_map,
show_progress_bar=True,
resample_method=resample_method,
generator=generator,
)
depth_pred: np.ndarray = pipe_out.depth_np
depth_colored: Image.Image = pipe_out.depth_colored
# Save as npy
rgb_name_base = os.path.splitext(os.path.basename(rgb_path))[0]
pred_name_base = rgb_name_base + "_pred"
npy_save_path = os.path.join(output_dir_npy, f"{pred_name_base}.npy")
if os.path.exists(npy_save_path):
logging.warning(f"Existing file: '{npy_save_path}' will be overwritten")
np.save(npy_save_path, depth_pred)
# Save as 16-bit uint png
depth_to_save = (depth_pred * 65535.0).astype(np.uint16)
png_save_path = os.path.join(output_dir_tif, f"{pred_name_base}.png")
if os.path.exists(png_save_path):
logging.warning(f"Existing file: '{png_save_path}' will be overwritten")
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
# Colorize
colored_save_path = os.path.join(
output_dir_color, f"{pred_name_base}_colored.png"
)
if os.path.exists(colored_save_path):
logging.warning(
f"Existing file: '{colored_save_path}' will be overwritten"
)
depth_colored.save(colored_save_path)