diff --git a/src/core/shape/curves.js b/src/core/shape/curves.js index 0932cbaa9c..0a3695118c 100644 --- a/src/core/shape/curves.js +++ b/src/core/shape/curves.js @@ -11,68 +11,197 @@ import '../friendly_errors/file_errors'; import '../friendly_errors/validate_params'; /** - * Draws a cubic Bezier curve on the screen. These curves are defined by a - * series of anchor and control points. The first two parameters specify - * the first anchor point and the last two parameters specify the other - * anchor point, which become the first and last points on the curve. The - * middle parameters specify the two control points which define the shape - * of the curve. Approximately speaking, control points "pull" the curve - * towards them. - * - * Bezier curves were developed by French automotive engineer Pierre Bezier, - * and are commonly used in computer graphics to define gently sloping curves. - * See also curve(). + * Draws a Bézier curve. + * + * Bézier curves can form shapes and curves that slope gently. They're defined + * by two anchor points and two control points. Bézier curves provide more + * control than the spline curves created with the + * curve() function. + * + * The first two parameters, `x1` and `y1`, set the first anchor point. The + * first anchor point is where the curve starts. + * + * The next four parameters, `x2`, `y2`, `x3`, and `y3`, set the two control + * points. The control points "pull" the curve towards them. + * + * The seventh and eighth parameters, `x4` and `y4`, set the last anchor + * point. The last anchor point is where the curve ends. + * + * Bézier curves can also be drawn in 3D using WebGL mode. The 3D version of + * `bezier()` has twelve arguments because each point has x-, y-, + * and z-coordinates. * * @method bezier - * @param {Number} x1 x-coordinate for the first anchor point - * @param {Number} y1 y-coordinate for the first anchor point - * @param {Number} x2 x-coordinate for the first control point - * @param {Number} y2 y-coordinate for the first control point - * @param {Number} x3 x-coordinate for the second control point - * @param {Number} y3 y-coordinate for the second control point - * @param {Number} x4 x-coordinate for the second anchor point - * @param {Number} y4 y-coordinate for the second anchor point + * @param {Number} x1 x-coordinate of the first anchor point. + * @param {Number} y1 y-coordinate of the first anchor point. + * @param {Number} x2 x-coordinate of the first control point. + * @param {Number} y2 y-coordinate of the first control point. + * @param {Number} x3 x-coordinate of the second control point. + * @param {Number} y3 y-coordinate of the second control point. + * @param {Number} x4 x-coordinate of the second anchor point. + * @param {Number} y4 y-coordinate of the second anchor point. * @chainable + * * @example *
* - * noFill(); - * stroke(255, 102, 0); - * line(85, 20, 10, 10); - * line(90, 90, 15, 80); - * stroke(0, 0, 0); - * bezier(85, 20, 10, 10, 90, 90, 15, 80); + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Draw the anchor points in black. + * stroke(0); + * strokeWeight(5); + * point(85, 20); + * point(15, 80); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(10, 10); + * point(90, 90); + * + * // Draw a black bezier curve. + * noFill(); + * stroke(0); + * strokeWeight(1); + * bezier(85, 20, 10, 10, 90, 90, 15, 80); + * + * // Draw red lines from the anchor points to the control points. + * stroke(255, 0, 0); + * line(85, 20, 10, 10); + * line(15, 80, 90, 90); + * + * describe( + * 'A gray square with three curves. A black s-curve has two straight, red lines that extend from its ends. The endpoints of all the curves are marked with dots.' + * ); + * } * *
* *
* - * background(0, 0, 0); - * noFill(); - * stroke(255); - * bezier(250, 250, 0, 100, 100, 0, 100, 0, 0, 0, 100, 0); + * // Click the mouse near the red dot in the top-left corner + * // and drag to change the curve's shape. + * + * let x2 = 10; + * let y2 = 10; + * let isChanging = false; + * + * function setup() { + * createCanvas(100, 100); + * + * describe( + * 'A gray square with three curves. A black s-curve has two straight, red lines that extend from its ends. The endpoints of all the curves are marked with dots.' + * ); + * } + * + * function draw() { + * background(200); + * + * // Draw the anchor points in black. + * stroke(0); + * strokeWeight(5); + * point(85, 20); + * point(15, 80); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(x2, y2); + * point(90, 90); + * + * // Draw a black bezier curve. + * noFill(); + * stroke(0); + * strokeWeight(1); + * bezier(85, 20, x2, y2, 90, 90, 15, 80); + * + * // Draw red lines from the anchor points to the control points. + * stroke(255, 0, 0); + * line(85, 20, x2, y2); + * line(15, 80, 90, 90); + * } + * + * // Start changing the first control point if the user clicks near it. + * function mousePressed() { + * if (dist(mouseX, mouseY, x2, y2) < 20) { + * isChanging = true; + * } + * } + * + * // Stop changing the first control point when the user releases the mouse. + * function mouseReleased() { + * isChanging = false; + * } + * + * // Update the first control point while the user drags the mouse. + * function mouseDragged() { + * if (isChanging === true) { + * x2 = mouseX; + * y2 = mouseY; + * } + * } * *
* - * @alt - * stretched black s-shape in center with orange lines extending from end points. - * a white colored curve on black background from the upper-right corner to the lower right corner. + *
+ * + * function setup() { + * createCanvas(100, 100); + * + * background('skyblue'); + * + * // Draw the red balloon. + * fill('red'); + * bezier(50, 60, 5, 15, 95, 15, 50, 60); + * + * // Draw the balloon string. + * line(50, 60, 50, 80); + * + * describe('A red balloon in a blue sky.'); + * } + * + *
+ * + *
+ * + * function setup() { + * createCanvas(100, 100, WEBGL); + * + * describe('A red balloon in a blue sky. The balloon rotates slowly, revealing that it is flat.'); + * } + * + * function draw() { + * background('skyblue'); + * + * // Rotate around the y-axis. + * rotateY(frameCount * 0.01); + * + * // Draw the red balloon. + * fill('red'); + * bezier(0, 0, 0, -45, -45, 0, 45, -45, 0, 0, 0, 0); + * + * // Draw the balloon string. + * line(0, 0, 0, 0, 20, 0); + * } + * + *
*/ /** * @method bezier * @param {Number} x1 * @param {Number} y1 - * @param {Number} z1 z-coordinate for the first anchor point + * @param {Number} z1 z-coordinate of the first anchor point. * @param {Number} x2 * @param {Number} y2 - * @param {Number} z2 z-coordinate for the first control point + * @param {Number} z2 z-coordinate of the first control point. * @param {Number} x3 * @param {Number} y3 - * @param {Number} z3 z-coordinate for the second control point + * @param {Number} z3 z-coordinate of the second control point. * @param {Number} x4 * @param {Number} y4 - * @param {Number} z4 z-coordinate for the second anchor point + * @param {Number} z4 z-coordinate of the second anchor point. * @chainable */ p5.prototype.bezier = function(...args) { @@ -90,37 +219,101 @@ p5.prototype.bezier = function(...args) { }; /** - * Sets the resolution at which Bezier's curve is displayed. The default value is 20. + * Sets the number of segments used to draw Bézier curves in WebGL mode. + * + * In WebGL mode, smooth shapes are drawn using many flat segments. Adding + * more flat segments makes shapes appear smoother. + * + * The parameter, `detail`, is the number of segments to use while drawing a + * Bézier curve. For example, calling `bezierDetail(5)` will use 5 segments to + * draw curves with the bezier() function. By + * default,`detail` is 20. * - * Note, This function is only useful when using the WEBGL renderer - * as the default canvas renderer does not use this information. + * Note: `bezierDetail()` has no effect in 2D mode. * * @method bezierDetail - * @param {Number} detail resolution of the curves + * @param {Number} detail number of segments to use. Defaults to 20. * @chainable + * * @example - *
+ *
* + * // Draw the original curve. + * * function setup() { - * createCanvas(100, 100, WEBGL); + * createCanvas(100, 100); + * + * background(200); + * + * // Draw the anchor points in black. + * stroke(0); + * strokeWeight(5); + * point(85, 20); + * point(15, 80); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(10, 10); + * point(90, 90); + * + * // Draw a black bezier curve. * noFill(); - * bezierDetail(5); + * stroke(0); + * strokeWeight(1); + * bezier(85, 20, 10, 10, 90, 90, 15, 80); + * + * // Draw red lines from the anchor points to the control points. + * stroke(255, 0, 0); + * line(85, 20, 10, 10); + * line(15, 80, 90, 90); + * + * describe( + * 'A gray square with three curves. A black s-curve has two straight, red lines that extend from its ends. The endpoints of all the curves are marked with dots.' + * ); * } + * + *
+ * + *
+ * + * // Draw the curve with less detail. + * + * function setup() { + * createCanvas(100, 100, WEBGL); * - * function draw() { * background(200); - * bezier( - * -40, -40, 0, - * 90, -40, 0, - * -90, 40, 0, - * 40, 40, 0 + * + * // Set the curveDetail() to 5. + * bezierDetail(5); + * + * // Draw the anchor points in black. + * stroke(0); + * strokeWeight(5); + * point(35, -30, 0); + * point(-35, 30, 0); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(-40, -40, 0); + * point(40, 40, 0); + * + * // Draw a black bezier curve. + * noFill(); + * stroke(0); + * strokeWeight(1); + * bezier(35, -30, 0, -40, -40, 0, 40, 40, 0, -35, 30, 0); + * + * // Draw red lines from the anchor points to the control points. + * stroke(255, 0, 0); + * line(35, -30, -40, -40); + * line(-35, 30, 40, 40); + * + * describe( + * 'A gray square with three curves. A black s-curve is drawn with jagged segments. Two straight, red lines that extend from its ends. The endpoints of all the curves are marked with dots.' * ); * } * *
- * - * @alt - * stretched black s-shape with a low level of bezier detail */ p5.prototype.bezierDetail = function(d) { p5._validateParameters('bezierDetail', arguments); @@ -129,47 +322,118 @@ p5.prototype.bezierDetail = function(d) { }; /** - * Given the x or y co-ordinate values of control and anchor points of a bezier - * curve, it evaluates the x or y coordinate of the bezier at position t. The - * parameters a and d are the x or y coordinates of first and last points on the - * curve while b and c are of the control points.The final parameter t is the - * position of the resultant point which is given between 0 and 1. - * This can be done once with the x coordinates and a second time - * with the y coordinates to get the location of a bezier curve at t. + * Calculates coordinates along a Bézier curve using interpolation. + * + * `bezierPoint()` calculates coordinates along a Bézier curve using the + * anchor and control points. It expects points in the same order as the + * bezier() function. `bezierPoint()` works one axis + * at a time. Passing the anchor and control points' x-coordinates will + * calculate the x-coordinate of a point on the curve. Passing the anchor and + * control points' y-coordinates will calculate the y-coordinate of a point on + * the curve. + * + * The first parameter, `a`, is the coordinate of the first anchor point. + * + * The second and third parameters, `b` and `c`, are the coordinates of the + * control points. + * + * The fourth parameter, `d`, is the coordinate of the last anchor point. + * + * The fifth parameter, `t`, is the amount to interpolate along the curve. 0 + * is the first anchor point, 1 is the second anchor point, and 0.5 is halfway + * between them. * * @method bezierPoint - * @param {Number} a coordinate of first point on the curve - * @param {Number} b coordinate of first control point - * @param {Number} c coordinate of second control point - * @param {Number} d coordinate of second point on the curve - * @param {Number} t value between 0 and 1 - * @return {Number} the value of the Bezier at position t + * @param {Number} a coordinate of first control point. + * @param {Number} b coordinate of first anchor point. + * @param {Number} c coordinate of second anchor point. + * @param {Number} d coordinate of second control point. + * @param {Number} t amount to interpolate between 0 and 1. + * @return {Number} coordinate of the point on the curve. + * * @example *
* - * noFill(); - * let x1 = 85, - x2 = 10, - x3 = 90, - x4 = 15; - * let y1 = 20, - y2 = 10, - y3 = 90, - y4 = 80; - * bezier(x1, y1, x2, y2, x3, y3, x4, y4); - * fill(255); - * let steps = 10; - * for (let i = 0; i <= steps; i++) { - * let t = i / steps; + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 85; + * let x2 = 10; + * let x3 = 90; + * let x4 = 15; + * let y1 = 20; + * let y2 = 10; + * let y3 = 90; + * let y4 = 80; + * + * // Style the curve. + * noFill(); + * + * // Draw the curve. + * bezier(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Draw circles along the curve's path. + * fill(255); + * + * // Top-right. + * let x = bezierPoint(x1, x2, x3, x4, 0); + * let y = bezierPoint(y1, y2, y3, y4, 0); + * circle(x, y, 5); + * + * // Center. + * x = bezierPoint(x1, x2, x3, x4, 0.5); + * y = bezierPoint(y1, y2, y3, y4, 0.5); + * circle(x, y, 5); + * + * // Bottom-left. + * x = bezierPoint(x1, x2, x3, x4, 1); + * y = bezierPoint(y1, y2, y3, y4, 1); + * circle(x, y, 5); + * + * describe('A black s-curve on a gray square. The endpoints and center of the curve are marked with white circles.'); + * } + * + *
+ * + *
+ * + * function setup() { + * createCanvas(100, 100); + * + * describe('A black s-curve on a gray square. A white circle moves back and forth along the curve.'); + * } + * + * function draw() { + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 85; + * let x2 = 10; + * let x3 = 90; + * let x4 = 15; + * let y1 = 20; + * let y2 = 10; + * let y3 = 90; + * let y4 = 80; + * + * // Draw the curve. + * noFill(); + * bezier(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Calculate the circle's coordinates. + * let t = 0.5 * sin(frameCount * 0.01) + 0.5; * let x = bezierPoint(x1, x2, x3, x4, t); * let y = bezierPoint(y1, y2, y3, y4, t); + * + * // Draw the circle. + * fill(255); * circle(x, y, 5); * } * *
- * - * @alt - * 10 points plotted on a given bezier at equal distances. */ p5.prototype.bezierPoint = function(a, b, c, d, t) { p5._validateParameters('bezierPoint', arguments); @@ -184,69 +448,110 @@ p5.prototype.bezierPoint = function(a, b, c, d, t) { }; /** - * Evaluates the tangent to the Bezier at position t for points a, b, c, d. - * The parameters a and d are the first and last points - * on the curve, and b and c are the control points. - * The final parameter t varies between 0 and 1. + * Calculates coordinates along a line that's tangent to a Bézier curve. + * + * Tangent lines skim the surface of a curve. A tangent line's slope equals + * the curve's slope at the point where it intersects. + * + * `bezierTangent()` calculates coordinates along a tangent line using the + * Bézier curve's anchor and control points. It expects points in the same + * order as the bezier() function. `bezierTangent()` + * works one axis at a time. Passing the anchor and control points' + * x-coordinates will calculate the x-coordinate of a point on the tangent + * line. Passing the anchor and control points' y-coordinates will calculate + * the y-coordinate of a point on the tangent line. + * + * The first parameter, `a`, is the coordinate of the first anchor point. + * + * The second and third parameters, `b` and `c`, are the coordinates of the + * control points. + * + * The fourth parameter, `d`, is the coordinate of the last anchor point. + * + * The fifth parameter, `t`, is the amount to interpolate along the curve. 0 + * is the first anchor point, 1 is the second anchor point, and 0.5 is halfway + * between them. * * @method bezierTangent - * @param {Number} a coordinate of first point on the curve - * @param {Number} b coordinate of first control point - * @param {Number} c coordinate of second control point - * @param {Number} d coordinate of second point on the curve - * @param {Number} t value between 0 and 1 - * @return {Number} the tangent at position t + * @param {Number} a coordinate of first anchor point. + * @param {Number} b coordinate of first control point. + * @param {Number} c coordinate of second control point. + * @param {Number} d coordinate of second anchor point. + * @param {Number} t amount to interpolate between 0 and 1. + * @return {Number} coordinate of a point on the tangent line. + * * @example *
* - * noFill(); - * bezier(85, 20, 10, 10, 90, 90, 15, 80); - * let steps = 6; - * fill(255); - * for (let i = 0; i <= steps; i++) { - * let t = i / steps; - * // Get the location of the point - * let x = bezierPoint(85, 10, 90, 15, t); - * let y = bezierPoint(20, 10, 90, 80, t); - * // Get the tangent points - * let tx = bezierTangent(85, 10, 90, 15, t); - * let ty = bezierTangent(20, 10, 90, 80, t); - * // Calculate an angle from the tangent points - * let a = atan2(ty, tx); - * a += PI; - * stroke(255, 102, 0); - * line(x, y, cos(a) * 30 + x, sin(a) * 30 + y); - * // The following line of code makes a line - * // inverse of the above line - * //line(x, y, cos(a)*-30 + x, sin(a)*-30 + y); + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 85; + * let x2 = 10; + * let x3 = 90; + * let x4 = 15; + * let y1 = 20; + * let y2 = 10; + * let y3 = 90; + * let y4 = 80; + * + * // Style the curve. + * noFill(); + * + * // Draw the curve. + * bezier(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Draw tangents along the curve's path. + * fill(255); + * + * // Top-right circle. * stroke(0); - * ellipse(x, y, 5, 5); - * } - * - *
+ * let x = bezierPoint(x1, x2, x3, x4, 0); + * let y = bezierPoint(y1, y2, y3, y4, 0); + * circle(x, y, 5); * - *
- * - * noFill(); - * bezier(85, 20, 10, 10, 90, 90, 15, 80); - * stroke(255, 102, 0); - * let steps = 16; - * for (let i = 0; i <= steps; i++) { - * let t = i / steps; - * let x = bezierPoint(85, 10, 90, 15, t); - * let y = bezierPoint(20, 10, 90, 80, t); - * let tx = bezierTangent(85, 10, 90, 15, t); - * let ty = bezierTangent(20, 10, 90, 80, t); - * let a = atan2(ty, tx); - * a -= HALF_PI; - * line(x, y, cos(a) * 8 + x, sin(a) * 8 + y); + * // Top-right tangent line. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * let tx = 0.1 * bezierTangent(x1, x2, x3, x4, 0); + * let ty = 0.1 * bezierTangent(y1, y2, y3, y4, 0); + * line(x + tx, y + ty, x - tx, y - ty); + * + * // Center circle. + * stroke(0); + * x = bezierPoint(x1, x2, x3, x4, 0.5); + * y = bezierPoint(y1, y2, y3, y4, 0.5); + * circle(x, y, 5); + * + * // Center tangent line. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * tx = 0.1 * bezierTangent(x1, x2, x3, x4, 0.5); + * ty = 0.1 * bezierTangent(y1, y2, y3, y4, 0.5); + * line(x + tx, y + ty, x - tx, y - ty); + * + * // Bottom-left circle. + * stroke(0); + * x = bezierPoint(x1, x2, x3, x4, 1); + * y = bezierPoint(y1, y2, y3, y4, 1); + * circle(x, y, 5); + * + * // Bottom-left tangent. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * tx = 0.1 * bezierTangent(x1, x2, x3, x4, 1); + * ty = 0.1 * bezierTangent(y1, y2, y3, y4, 1); + * line(x + tx, y + ty, x - tx, y - ty); + * + * describe( + * 'A black s-curve on a gray square. The endpoints and center of the curve are marked with white circles. Red tangent lines extend from the white circles.' + * ); * } * *
- * - * @alt - * s-shaped line with 6 short orange lines showing the tangents at those points. - * s-shaped line with 6 short orange lines showing lines coming out the underside of the bezier. */ p5.prototype.bezierTangent = function(a, b, c, d, t) { p5._validateParameters('bezierTangent', arguments); @@ -263,87 +568,195 @@ p5.prototype.bezierTangent = function(a, b, c, d, t) { }; /** - * Draws a curved line on the screen between two points, given as the - * middle four parameters. The first two parameters are a control point, as - * if the curve came from this point even though it's not drawn. The last - * two parameters similarly describe the other control point.

- * Longer curves can be created by putting a series of curve() functions - * together or using curveVertex(). An additional function called - * curveTightness() provides control for the visual quality of the curve. - * The curve() function is an implementation of Catmull-Rom splines. + * Draws a curve using a Catmull-Rom spline. + * + * Spline curves can form shapes and curves that slope gently. They’re like + * cables that are attached to a set of points. Splines are defined by two + * anchor points and two control points. + * + * The first two parameters, `x1` and `y1`, set the first control point. This + * point isn’t drawn and can be thought of as the curve’s starting point. + * + * The next four parameters, `x2`, `y2`, `x3`, and `y3`, set the two anchor + * points. The anchor points are the start and end points of the curve’s + * visible segment. + * + * The seventh and eighth parameters, `x4` and `y4`, set the last control + * point. This point isn’t drawn and can be thought of as the curve’s ending + * point. + * + * Spline curves can also be drawn in 3D using WebGL mode. The 3D version of + * `curve()` has twelve arguments because each point has x-, y-, and + * z-coordinates. * * @method curve - * @param {Number} x1 x-coordinate for the beginning control point - * @param {Number} y1 y-coordinate for the beginning control point - * @param {Number} x2 x-coordinate for the first point - * @param {Number} y2 y-coordinate for the first point - * @param {Number} x3 x-coordinate for the second point - * @param {Number} y3 y-coordinate for the second point - * @param {Number} x4 x-coordinate for the ending control point - * @param {Number} y4 y-coordinate for the ending control point + * @param {Number} x1 x-coordinate of the first control point. + * @param {Number} y1 y-coordinate of the first control point. + * @param {Number} x2 x-coordinate of the first anchor point. + * @param {Number} y2 y-coordinate of the first anchor point. + * @param {Number} x3 x-coordinate of the second anchor point. + * @param {Number} y3 y-coordinate of the second anchor point. + * @param {Number} x4 x-coordinate of the second control point. + * @param {Number} y4 y-coordinate of the second control point. * @chainable + * * @example *
* - * noFill(); - * stroke(255, 102, 0); - * curve(5, 26, 5, 26, 73, 24, 73, 61); - * stroke(0); - * curve(5, 26, 73, 24, 73, 61, 15, 65); - * stroke(255, 102, 0); - * curve(73, 24, 73, 61, 15, 65, 15, 65); + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Draw a black spline curve. + * noFill(); + * strokeWeight(1); + * stroke(0); + * curve(5, 26, 73, 24, 73, 61, 15, 65); + * + * // Draw red spline curves from the anchor points to the control points. + * stroke(255, 0, 0); + * curve(5, 26, 5, 26, 73, 24, 73, 61); + * curve(73, 24, 73, 61, 15, 65, 15, 65); + * + * // Draw the anchor points in black. + * strokeWeight(5); + * stroke(0); + * point(73, 24); + * point(73, 61); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(5, 26); + * point(15, 65); + * + * describe( + * 'A gray square with a curve drawn in three segments. The curve is a sideways U shape with red segments on top and bottom, and a black segment on the right. The endpoints of all the segments are marked with dots.' + * ); + * } * *
* *
* - * // Define the curve points as JavaScript objects - * let p1 = { x: 5, y: 26 }; - * let p2 = { x: 73, y: 24 }; - * let p3 = { x: 73, y: 61 }; - * let p4 = { x: 15, y: 65 }; - * noFill(); - * stroke(255, 102, 0); - * curve(p1.x, p1.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y); - * stroke(0); - * curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y); - * stroke(255, 102, 0); - * curve(p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, p4.x, p4.y); + * let x1 = 5; + * let y1 = 26; + * let isChanging = false; + * + * function setup() { + * createCanvas(100, 100); + * + * describe( + * 'A gray square with a curve drawn in three segments. The curve is a sideways U shape with red segments on top and bottom, and a black segment on the right. The endpoints of all the segments are marked with dots.' + * ); + * } + * + * function draw() { + * background(200); + * + * // Draw a black spline curve. + * noFill(); + * strokeWeight(1); + * stroke(0); + * curve(x1, y1, 73, 24, 73, 61, 15, 65); + * + * // Draw red spline curves from the anchor points to the control points. + * stroke(255, 0, 0); + * curve(x1, y1, x1, y1, 73, 24, 73, 61); + * curve(73, 24, 73, 61, 15, 65, 15, 65); + * + * // Draw the anchor points in black. + * strokeWeight(5); + * stroke(0); + * point(73, 24); + * point(73, 61); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(x1, y1); + * point(15, 65); + * } + * + * // Start changing the first control point if the user clicks near it. + * function mousePressed() { + * if (dist(mouseX, mouseY, x1, y1) < 20) { + * isChanging = true; + * } + * } + * + * // Stop changing the first control point when the user releases the mouse. + * function mouseReleased() { + * isChanging = false; + * } + * + * // Update the first control point while the user drags the mouse. + * function mouseDragged() { + * if (isChanging === true) { + * x1 = mouseX; + * y1 = mouseY; + * } + * } * *
* *
* - * noFill(); - * stroke(255, 102, 0); - * curve(5, 26, 0, 5, 26, 0, 73, 24, 0, 73, 61, 0); - * stroke(0); - * curve(5, 26, 0, 73, 24, 0, 73, 61, 0, 15, 65, 0); - * stroke(255, 102, 0); - * curve(73, 24, 0, 73, 61, 0, 15, 65, 0, 15, 65, 0); + * function setup() { + * createCanvas(100, 100); + * + * background('skyblue'); + * + * // Draw the red balloon. + * fill('red'); + * curve(-150, 275, 50, 60, 50, 60, 250, 275); + * + * // Draw the balloon string. + * line(50, 60, 50, 80); + * + * describe('A red balloon in a blue sky.'); + * } * *
* - * @alt - * horseshoe shape with orange ends facing left and black curved center. - * horseshoe shape with orange ends facing left and black curved center. - * curving black and orange lines. + *
+ * + * function setup() { + * createCanvas(100, 100, WEBGL); + * + * describe('A red balloon in a blue sky.'); + * } + * + * function draw() { + * background('skyblue'); + * + * // Rotate around the y-axis. + * rotateY(frameCount * 0.01); + * + * // Draw the red balloon. + * fill('red'); + * curve(-200, 225, 0, 0, 10, 0, 0, 10, 0, 200, 225, 0); + * + * // Draw the balloon string. + * line(0, 10, 0, 0, 30, 0); + * } + * + *
*/ /** * @method curve * @param {Number} x1 * @param {Number} y1 - * @param {Number} z1 z-coordinate for the beginning control point + * @param {Number} z1 z-coordinate of the first control point. * @param {Number} x2 * @param {Number} y2 - * @param {Number} z2 z-coordinate for the first point + * @param {Number} z2 z-coordinate of the first anchor point. * @param {Number} x3 * @param {Number} y3 - * @param {Number} z3 z-coordinate for the second point + * @param {Number} z3 z-coordinate of the second anchor point. * @param {Number} x4 * @param {Number} y4 - * @param {Number} z4 z-coordinate for the ending control point + * @param {Number} z4 z-coordinate of the second control point. * @chainable */ p5.prototype.curve = function(...args) { @@ -357,34 +770,97 @@ p5.prototype.curve = function(...args) { }; /** - * Sets the resolution at which curves display. The default value is 20 while - * the minimum value is 3. + * Sets the number of segments used to draw spline curves in WebGL mode. + * + * In WebGL mode, smooth shapes are drawn using many flat segments. Adding + * more flat segments makes shapes appear smoother. * - * This function is only useful when using the WEBGL renderer - * as the default canvas renderer does not use this - * information. + * The parameter, `detail`, is the number of segments to use while drawing a + * spline curve. For example, calling `curveDetail(5)` will use 5 segments to + * draw curves with the curve() function. By + * default,`detail` is 20. + * + * Note: `curveDetail()` has no effect in 2D mode. * * @method curveDetail - * @param {Number} resolution resolution of the curves + * @param {Number} resolution number of segments to use. Defaults to 20. * @chainable + * * @example - *
+ *
* * function setup() { - * createCanvas(100, 100, WEBGL); + * createCanvas(100, 100); * - * curveDetail(5); - * } - * function draw() { * background(200); * - * curve(250, 600, 0, -30, 40, 0, 30, 30, 0, -250, 600, 0); + * // Draw a black spline curve. + * noFill(); + * strokeWeight(1); + * stroke(0); + * curve(5, 26, 73, 24, 73, 61, 15, 65); + * + * // Draw red spline curves from the anchor points to the control points. + * stroke(255, 0, 0); + * curve(5, 26, 5, 26, 73, 24, 73, 61); + * curve(73, 24, 73, 61, 15, 65, 15, 65); + * + * // Draw the anchor points in black. + * strokeWeight(5); + * stroke(0); + * point(73, 24); + * point(73, 61); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(5, 26); + * point(15, 65); + * + * describe( + * 'A gray square with a curve drawn in three segments. The curve is a sideways U shape with red segments on top and bottom, and a black segment on the right. The endpoints of all the segments are marked with dots.' + * ); * } * *
* - * @alt - * white arch shape with a low level of curve detail. + *
+ * + * function setup() { + * createCanvas(100, 100, WEBGL); + * + * background(200); + * + * // Set the curveDetail() to 3. + * curveDetail(3); + * + * // Draw a black spline curve. + * noFill(); + * strokeWeight(1); + * stroke(0); + * curve(-45, -24, 0, 23, -26, 0, 23, 11, 0, -35, 15, 0); + * + * // Draw red spline curves from the anchor points to the control points. + * stroke(255, 0, 0); + * curve(-45, -24, 0, -45, -24, 0, 23, -26, 0, 23, 11, 0); + * curve(23, -26, 0, 23, 11, 0, -35, 15, 0, -35, 15, 0); + * + * // Draw the anchor points in black. + * strokeWeight(5); + * stroke(0); + * point(23, -26); + * point(23, 11); + * + * // Draw the control points in red. + * stroke(255, 0, 0); + * point(-45, -24); + * point(-35, 15); + * + * describe( + * 'A gray square with a jagged curve drawn in three segments. The curve is a sideways U shape with red segments on top and bottom, and a black segment on the right. The endpoints of all the segments are marked with dots.' + * ); + * } + * + *
*/ p5.prototype.curveDetail = function(d) { p5._validateParameters('curveDetail', arguments); @@ -397,30 +873,42 @@ p5.prototype.curveDetail = function(d) { }; /** - * Modifies the quality of forms created with curve() - * and curveVertex().The parameter tightness - * determines how the curve fits to the vertex points. The value 0.0 is the - * default value for tightness (this value defines the curves to be Catmull-Rom - * splines) and the value 1.0 connects all the points with straight lines. - * Values within the range -5.0 and 5.0 will deform the curves but will leave - * them recognizable and as values increase in magnitude, they will continue to deform. + * Adjusts the way curve() and + * curveVertex() draw. + * + * Spline curves are like cables that are attached to a set of points. + * `curveTightness()` adjusts how tightly the cable is attached to the points. + * + * The parameter, `tightness`, determines how the curve fits to the vertex + * points. By default, `tightness` is set to 0. Setting tightness to 1, + * as in `curveTightness(1)`, connects the curve's points using straight + * lines. Values in the range from –5 to 5 deform curves while leaving them + * recognizable. * * @method curveTightness - * @param {Number} amount amount of deformation from the original vertices + * @param {Number} amount amount of tightness. * @chainable + * * @example *
* - * // Move the mouse left and right to see the curve change + * // Move the mouse left and right to see the curve change. + * * function setup() { * createCanvas(100, 100); - * noFill(); + * + * describe('A black curve forms a sideways U shape. The curve deforms as the user moves the mouse from left to right'); * } * * function draw() { - * background(204); - * let t = map(mouseX, 0, width, -5, 5); + * background(200); + * + * // Set the curve's tightness using the mouse. + * let t = map(mouseX, 0, 100, -5, 5, true); * curveTightness(t); + * + * // Draw the curve. + * noFill(); * beginShape(); * curveVertex(10, 26); * curveVertex(10, 26); @@ -432,9 +920,6 @@ p5.prototype.curveDetail = function(d) { * } * *
- * - * @alt - * Line shaped like right-facing arrow,points move with mouse-x and warp shape. */ p5.prototype.curveTightness = function(t) { p5._validateParameters('curveTightness', arguments); @@ -443,41 +928,116 @@ p5.prototype.curveTightness = function(t) { }; /** - * Evaluates the curve at position t for points a, b, c, d. - * The parameter t varies between 0 and 1, a and d are control points - * of the curve, and b and c are the start and end points of the curve. - * This can be done once with the x coordinates and a second time - * with the y coordinates to get the location of a curve at t. + * Calculates coordinates along a spline curve using interpolation. + * + * `curvePoint()` calculates coordinates along a spline curve using the + * anchor and control points. It expects points in the same order as the + * curve() function. `curvePoint()` works one axis + * at a time. Passing the anchor and control points' x-coordinates will + * calculate the x-coordinate of a point on the curve. Passing the anchor and + * control points' y-coordinates will calculate the y-coordinate of a point on + * the curve. + * + * The first parameter, `a`, is the coordinate of the first control point. + * + * The second and third parameters, `b` and `c`, are the coordinates of the + * anchor points. + * + * The fourth parameter, `d`, is the coordinate of the last control point. + * + * The fifth parameter, `t`, is the amount to interpolate along the curve. 0 + * is the first anchor point, 1 is the second anchor point, and 0.5 is halfway + * between them. * * @method curvePoint - * @param {Number} a coordinate of first control point of the curve - * @param {Number} b coordinate of first point - * @param {Number} c coordinate of second point - * @param {Number} d coordinate of second control point - * @param {Number} t value between 0 and 1 - * @return {Number} Curve value at position t + * @param {Number} a coordinate of first anchor point. + * @param {Number} b coordinate of first control point. + * @param {Number} c coordinate of second control point. + * @param {Number} d coordinate of second anchor point. + * @param {Number} t amount to interpolate between 0 and 1. + * @return {Number} coordinate of a point on the curve. + * * @example *
* - * noFill(); - * curve(5, 26, 5, 26, 73, 24, 73, 61); - * curve(5, 26, 73, 24, 73, 61, 15, 65); - * fill(255); - * ellipseMode(CENTER); - * let steps = 6; - * for (let i = 0; i <= steps; i++) { - * let t = i / steps; - * let x = curvePoint(5, 5, 73, 73, t); - * let y = curvePoint(26, 26, 24, 61, t); - * ellipse(x, y, 5, 5); - * x = curvePoint(5, 73, 73, 15, t); - * y = curvePoint(26, 24, 61, 65, t); - * ellipse(x, y, 5, 5); + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 5; + * let y1 = 26; + * let x2 = 73; + * let y2 = 24; + * let x3 = 73; + * let y3 = 61; + * let x4 = 15; + * let y4 = 65; + * + * // Draw the curve. + * noFill(); + * curve(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Draw circles along the curve's path. + * fill(255); + * + * // Top. + * let x = curvePoint(x1, x2, x3, x4, 0); + * let y = curvePoint(y1, y2, y3, y4, 0); + * circle(x, y, 5); + * + * // Center. + * x = curvePoint(x1, x2, x3, x4, 0.5); + * y = curvePoint(y1, y2, y3, y4, 0.5); + * circle(x, y, 5); + * + * // Bottom. + * x = curvePoint(x1, x2, x3, x4, 1); + * y = curvePoint(y1, y2, y3, y4, 1); + * circle(x, y, 5); + * + * describe('A black curve on a gray square. The endpoints and center of the curve are marked with white circles.'); * } * *
* - *line hooking down to right-bottom with 13 5×5 white ellipse points + *
+ * + * function setup() { + * createCanvas(100, 100); + * + * describe('A black curve on a gray square. A white circle moves back and forth along the curve.'); + * } + * + * function draw() { + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 5; + * let y1 = 26; + * let x2 = 73; + * let y2 = 24; + * let x3 = 73; + * let y3 = 61; + * let x4 = 15; + * let y4 = 65; + * + * // Draw the curve. + * noFill(); + * curve(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Calculate the circle's coordinates. + * let t = 0.5 * sin(frameCount * 0.01) + 0.5; + * let x = curvePoint(x1, x2, x3, x4, t); + * let y = curvePoint(y1, y2, y3, y4, t); + * + * // Draw the circle. + * fill(255); + * circle(x, y, 5); + * } + * + *
*/ p5.prototype.curvePoint = function(a, b, c, d, t) { p5._validateParameters('curvePoint', arguments); @@ -492,39 +1052,108 @@ p5.prototype.curvePoint = function(a, b, c, d, t) { }; /** - * Evaluates the tangent to the curve at position t for points a, b, c, d. - * The parameter t varies between 0 and 1, a and d are points on the curve, - * and b and c are the control points. + * Calculates coordinates along a line that's tangent to a spline curve. + * + * Tangent lines skim the surface of a curve. A tangent line's slope equals + * the curve's slope at the point where it intersects. + * + * `curveTangent()` calculates coordinates along a tangent line using the + * spline curve's anchor and control points. It expects points in the same + * order as the curve() function. `curveTangent()` + * works one axis at a time. Passing the anchor and control points' + * x-coordinates will calculate the x-coordinate of a point on the tangent + * line. Passing the anchor and control points' y-coordinates will calculate + * the y-coordinate of a point on the tangent line. + * + * The first parameter, `a`, is the coordinate of the first control point. + * + * The second and third parameters, `b` and `c`, are the coordinates of the + * anchor points. + * + * The fourth parameter, `d`, is the coordinate of the last control point. + * + * The fifth parameter, `t`, is the amount to interpolate along the curve. 0 + * is the first anchor point, 1 is the second anchor point, and 0.5 is halfway + * between them. * * @method curveTangent - * @param {Number} a coordinate of first control point - * @param {Number} b coordinate of first point on the curve - * @param {Number} c coordinate of second point on the curve - * @param {Number} d coordinate of second conrol point - * @param {Number} t value between 0 and 1 - * @return {Number} the tangent at position t + * @param {Number} a coordinate of first control point. + * @param {Number} b coordinate of first anchor point. + * @param {Number} c coordinate of second anchor point. + * @param {Number} d coordinate of second control point. + * @param {Number} t amount to interpolate between 0 and 1. + * @return {Number} coordinate of a point on the tangent line. + * * @example *
* - * noFill(); - * curve(5, 26, 73, 24, 73, 61, 15, 65); - * let steps = 6; - * for (let i = 0; i <= steps; i++) { - * let t = i / steps; - * let x = curvePoint(5, 73, 73, 15, t); - * let y = curvePoint(26, 24, 61, 65, t); - * //ellipse(x, y, 5, 5); - * let tx = curveTangent(5, 73, 73, 15, t); - * let ty = curveTangent(26, 24, 61, 65, t); - * let a = atan2(ty, tx); - * a -= PI / 2.0; - * line(x, y, cos(a) * 8 + x, sin(a) * 8 + y); + * function setup() { + * createCanvas(100, 100); + * + * background(200); + * + * // Set the coordinates for the curve's anchor and control points. + * let x1 = 5; + * let y1 = 26; + * let x2 = 73; + * let y2 = 24; + * let x3 = 73; + * let y3 = 61; + * let x4 = 15; + * let y4 = 65; + * + * // Draw the curve. + * noFill(); + * curve(x1, y1, x2, y2, x3, y3, x4, y4); + * + * // Draw tangents along the curve's path. + * fill(255); + * + * // Top circle. + * stroke(0); + * let x = curvePoint(x1, x2, x3, x4, 0); + * let y = curvePoint(y1, y2, y3, y4, 0); + * circle(x, y, 5); + * + * // Top tangent line. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * let tx = 0.2 * curveTangent(x1, x2, x3, x4, 0); + * let ty = 0.2 * curveTangent(y1, y2, y3, y4, 0); + * line(x + tx, y + ty, x - tx, y - ty); + * + * // Center circle. + * stroke(0); + * x = curvePoint(x1, x2, x3, x4, 0.5); + * y = curvePoint(y1, y2, y3, y4, 0.5); + * circle(x, y, 5); + * + * // Center tangent line. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * tx = 0.2 * curveTangent(x1, x2, x3, x4, 0.5); + * ty = 0.2 * curveTangent(y1, y2, y3, y4, 0.5); + * line(x + tx, y + ty, x - tx, y - ty); + * + * // Bottom circle. + * stroke(0); + * x = curvePoint(x1, x2, x3, x4, 1); + * y = curvePoint(y1, y2, y3, y4, 1); + * circle(x, y, 5); + * + * // Bottom tangent line. + * // Scale the tangent point to draw a shorter line. + * stroke(255, 0, 0); + * tx = 0.2 * curveTangent(x1, x2, x3, x4, 1); + * ty = 0.2 * curveTangent(y1, y2, y3, y4, 1); + * line(x + tx, y + ty, x - tx, y - ty); + * + * describe( + * 'A black curve on a gray square. A white circle moves back and forth along the curve.' + * ); * } * *
- * - * @alt - * right curving line mid-right of canvas with 7 short lines radiating from it. */ p5.prototype.curveTangent = function(a, b, c, d, t) { p5._validateParameters('curveTangent', arguments);