forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_model.py
135 lines (100 loc) · 3.07 KB
/
visualize_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
A script to visualize layers and filters in the conv net model
"""
import tflearn
from cnn_model import CNNModel
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from scipy.ndimage import imread, zoom
def create_mosaic(image, nrows, ncols):
"""
Tiles all the layers in nrows x ncols
Args:
------
image = 3d numpy array of M * N * number of filters dimensions
nrows = integer representing number of images in a row
ncol = integer representing number of images in a column
returns formatted image
"""
M = image.shape[0]
N = image.shape[1]
npad = ((1,1), (1,1), (0,0))
image = np.pad(image, pad_width = npad, mode = 'constant',\
constant_values = 0)
M += 2
N += 2
image = image.reshape(M, N, nrows, ncols)
image = np.transpose(image, (2,0,3,1))
image = image.reshape(M*nrows, N*ncols)
return image
def get_layer_output(layer, model, inp):
"""
Returns model layer output
Args
----
layer: cnn layer
model: cnn model
inp: input image
"""
m2 = tflearn.DNN(layer, session = model.session)
yhat = m2.predict(inp.reshape(-1, inp.shape[0], inp.shape[1], 1))
yhat_1 = np.array(yhat[0])
return m2, yhat_1
def plot_layers(image, idx, pltfilename, size = 12, cmapx = 'magma'):
"""
plot filter output in layers
Args
----
image: layer output of form M x N x nfilt
idx: layer number
pltfilename = a string representing filename
"""
nfilt = image.shape[-1]
mosaic = create_mosaic(image, nfilt/4, 4)
plt.figure(figsize = (size, size))
plt.imshow(mosaic, cmap = cmapx)
plt.axis('off')
plt.savefig(pltfilename + str(idx)+'.png', bbox_inches='tight')
#plt.show()
def get_weights(m2, layer):
"""
get a layer's weights
Args:
------
m2: model input
layer = layer in question
Returns:
weights
"""
weights = m2.get_weights(layer.W)
print weights.shape
weights =\
weights.reshape(weights.shape[0], weights.shape[1], weights.shape[-1])
return weights
def plot_single_output(image, size = 6):
plt.figure(figsize = (size, size))
plt.imshow(mosaic, cmap = 'magma')
plt.axis('off')
plt.savefig('filterout' + '.png', bbox_inches='tight')
def main():
### Plot layer
filename = '../data/test/image_21351.jpg'
inp = imread(filename).astype('float32')
convnet = CNNModel()
conv_layer_1, conv_layer_2, conv_layer_3, network =\
convnet.define_network(inp.reshape(-1, inp.shape[0], inp.shape[1], 1), 'visual')
model = tflearn.DNN(network, tensorboard_verbose=0,\
checkpoint_path='nodule3-classifier.tfl.ckpt')
model.load("nodule3-classifier.tfl")
print model.predict(inp.reshape(-1, 50, 50, 1))
layers_to_be_plotted = [conv_layer_1, conv_layer_2, conv_layer_3]
#plot_layers(conv_layer_1, model, inp)
for idx, layer in enumerate(layers_to_be_plotted):
m2, yhat = get_layer_output(layer, model, inp)
plot_layers(yhat, idx, 'conv_layer_')
weights = get_weights(m2, conv_layer_1)
plot_layers(weights, 0, 'weight_conv_layer_', 6, 'gray')
if __name__ == "__main__":
main()