forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
43 lines (34 loc) · 1.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
from PIL import Image
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub # type: ignore
# Load the model
TF_MODEL_URL = 'https://tfhub.dev/google/on_device_vision/classifier/landmarks_classifier_asia_V1/1'
IMAGE_SHAPE = (321, 321)
classifier = tf.keras.Sequential([
tf.keras.layers.InputLayer(shape=IMAGE_SHAPE+(3,)),
tf.keras.layers.Lambda(lambda x: hub.KerasLayer(TF_MODEL_URL, output_key='predictions:logits')(x))
])
# Load the label map
LABEL_MAP_URL = 'https://www.gstatic.com/aihub/tfhub/labelmaps/landmarks_classifier_asia_V1_label_map.csv'
df = pd.read_csv(LABEL_MAP_URL)
label_map = dict(zip(df.id, df.name))
# Define the prediction function
def classify_image(image):
img = np.array(image)/255.0
img = img[np.newaxis, ...]
prediction = classifier.predict(img)
return label_map[np.argmax(prediction)]
# Streamlit app
st.title("Landmark Detection Web App")
uploaded_file = st.file_uploader("Choose an image...", type="jpeg")
if uploaded_file is not None:
st.success("Image uploaded successfully!")
image = Image.open(uploaded_file).resize(IMAGE_SHAPE)
st.image(image, caption='Uploaded Image.', use_column_width=True)
if st.button("Classify Image"):
with st.spinner('Classifying...'):
label = classify_image(image)
st.success(f"Prediction: {label}")