forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
45 lines (35 loc) · 1.33 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
# Load the dataset
df = pd.read_csv("./spam.csv")
# Convert category to binary (spam=1, ham=0)
df['spam'] = df['Category'].apply(lambda x: 1 if x == 'spam' else 0)
# Split the dataset into features and target variable
X = df['Message']
y = df['spam']
# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a pipeline that combines CountVectorizer and MultinomialNB
clf = Pipeline([
('vectorizer', CountVectorizer()),
('nb', MultinomialNB())
])
# Fit the model
clf.fit(X_train, y_train)
# Evaluate the model
accuracy = clf.score(X_test, y_test)
print(f"Model accuracy: {accuracy:.4f}")
# Example emails to classify
emails = [
'Hey mohan, can we get together to watch the football game tomorrow?',
'Upto 20% discount on parking, exclusive offer just for you. Don’t miss this reward!'
]
# Predict using the pipeline
predictions = clf.predict(emails)
# Print predictions
for email, prediction in zip(emails, predictions):
label = 'spam' if prediction == 1 else 'ham'
print(f"Email: '{email}' => Prediction: {label}")