forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
109 lines (91 loc) · 4.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
from scholarly import scholarly
import pandas as pd
import google.generativeai as genai
import os
# Configure Google Generative AI
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Streamlit App
st.title("🤖 Research Snap")
# Input for author name
author_name = st.text_input("Enter the author's name:", "Steven A Cholewiak")
if st.button("Generate Summary"):
# Retrieve the author's data
search_query = scholarly.search_author(author_name)
first_author_result = next(search_query)
author = scholarly.fill(first_author_result)
# Initialize a string to store all textual data
summary_text = ""
# Display author's name and affiliation
author_info = [
f"**Name:** {author['name']}",
f"**Affiliation:** {author.get('affiliation', 'N/A')}"
]
st.subheader("Author Information")
for info in author_info:
st.write(info) # Display each piece of information as a separate line
summary_text += info + "\n"
# Display research interests as a list
st.subheader("Research Interests")
interests = author.get('interests', [])
if interests:
interests_list = "- " + "\n- ".join(interests) # Display interests as a bullet list
st.write(interests_list)
summary_text += f"**Research Interests:**\n{interests_list}\n"
else:
st.write('N/A')
summary_text += "**Research Interests:** N/A\n"
# Citations overview
st.subheader("Citations Overview")
citations = {
"Total Citations": author.get('citedby', 'N/A'),
"Citations (Last 5 Years)": author.get('citedby5y', 'N/A')
}
for citation_name, citation_value in citations.items():
st.write(f"**{citation_name}:** {citation_value}")
summary_text += f"**{citation_name}:** {citation_value}\n"
# Citations per year
citations_per_year = author.get('cites_per_year', {})
if citations_per_year:
citations_df = pd.DataFrame(list(citations_per_year.items()), columns=['Year', 'Citations'])
st.subheader("Citations Per Year")
st.line_chart(citations_df.set_index('Year'))
summary_text += "Citations data is available.\n"
else:
st.write("No citation data available for the past years.")
summary_text += "No citation data available for the past years.\n"
# Indexes
st.subheader("Indexes")
indexes = {
"H-Index": author.get('hindex', 'N/A'),
"H-Index (Last 5 Years)": author.get('hindex5y', 'N/A'),
"i10-Index": author.get('i10index', 'N/A'),
"i10-Index (Last 5 Years)": author.get('i10index5y', 'N/A')
}
# Displaying indexes in a more structured format
for index_name, index_value in indexes.items():
st.write(f"**{index_name}:** {index_value}")
summary_text += f"**{index_name}:** {index_value}\n"
# Display top publications
st.subheader("Top Publications")
top_publications = sorted(author['publications'], key=lambda x: x.get('num_citations', 0), reverse=True)[:5]
top_publications_text = ""
for pub in top_publications:
pub_filled = scholarly.fill(pub)
publication_info = f"- **{pub_filled['bib']['title']}** (Citations: {pub_filled.get('num_citations', 0)})"
st.write(publication_info)
top_publications_text += publication_info + "\n"
summary_text += f"**Top Publications:**\n{top_publications_text}\n"
# Generate summary using Google Generative AI
model = genai.GenerativeModel("gemini-pro")
chat = model.start_chat(history=[])
# Function to generate summary using Gemini Pro model
def generate_summary(data):
summary_prompt = f"Write a concise 200-word summary based on the following information:\n{data}\nInclude key details like research interests, citations, H-index, co-authors, and notable publications."
response = chat.send_message(summary_prompt)
summary = "".join([chunk.text for chunk in response])
return summary
# Generate and display the summary
generated_summary = generate_summary(summary_text)
st.subheader("Profile Summary")
st.write(generated_summary)