-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathloss.py
41 lines (32 loc) · 1.42 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch.nn.functional as F
import gin
@gin.configurable()
def sequence_loss(disp_est, disp_gt,
depthloss_threshold=100,
gradual_weight=None,
gamma=0.9,
depth_cut=1e-3):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(disp_est)
flow_loss = 0.0
valid = disp_gt > 0.0
ht, wd = disp_gt.shape[-2:]
for i in range(n_predictions):
disp_est[i] = F.interpolate(disp_est[i], [ht, wd], mode='bilinear', align_corners=True)
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
loss_disp = (disp_est[i] - disp_gt).abs()
loss_depth = (1.0 / disp_est[i].clamp(min=depth_cut) - 1.0 / disp_gt.clamp(min=depth_cut)).abs()
loss_depth = loss_depth.clamp(max=depthloss_threshold) / 3.6e5
i_loss = gradual_weight * loss_depth + (1 - gradual_weight) * loss_disp
flow_loss += i_weight * (valid * i_loss).mean()
flow_loss += .01 * i_weight * (i_loss).mean()
epe = (1.0/disp_est[-1].clamp(min=depth_cut) - 1.0/disp_gt).abs()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'mean_depth_error': epe.mean().item(),
'less3': (epe < 3).float().mean().item(),
'less10': (epe < 10).float().mean().item(),
'less25': (epe < 25).float().mean().item(),
}
return flow_loss, metrics