This repository has been archived by the owner on Jul 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
AuxiliaryStatistics.pyx
843 lines (689 loc) · 41.4 KB
/
AuxiliaryStatistics.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport ReferenceState
cimport DiagnosticVariables
cimport PrognosticVariables
cimport ParallelMPI
cimport MomentumAdvection
cimport MomentumDiffusion
from NetCDFIO cimport NetCDFIO_Stats
import cython
cimport numpy as np
import numpy as np
from libc.math cimport sqrt
include "parameters.pxi"
cdef extern from "thermodynamic_functions.h":
double thetas_c(const double s, const double qt) nogil
class AuxiliaryStatistics:
def __init__(self, namelist):
self.AuxStatsClasses = []
return
def initialize(self, namelist, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
try:
auxiliary_statistics = namelist['stats_io']['auxiliary']
except:
return
#Convert whatever is in auxiliary_statistics to list if not already
if not type(auxiliary_statistics) == list:
auxiliary_statistics = [auxiliary_statistics]
#Build list of auxilary statistics class instances
if 'Cumulus' in auxiliary_statistics:
self.AuxStatsClasses.append(CumulusStatistics(Gr,PV, DV, NS, Pa))
if 'StableBL' in auxiliary_statistics:
self.AuxStatsClasses.append(StableBLStatistics(Gr, NS, Pa))
if 'SMOKE' in auxiliary_statistics:
self.AuxStatsClasses.append(SmokeStatistics(Gr, NS, Pa))
if 'DYCOMS' in auxiliary_statistics:
self.AuxStatsClasses.append(DYCOMSStatistics(Gr, NS, Pa))
if 'TKE' in auxiliary_statistics:
self.AuxStatsClasses.append(TKEStatistics(Gr, NS, Pa))
if 'Flux' in auxiliary_statistics:
self.AuxStatsClasses.append(FluxStatistics(Gr,PV, DV, NS, Pa))
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
#loop over class instances and class stats_io
for aux_class in self.AuxStatsClasses:
aux_class.stats_io(Gr, RS, PV, DV, MA, MD, NS, Pa)
return
class CumulusStatistics:
def __init__(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
conditions = ['cloud','core']
scalars = ['qt','ql','s', 'thetas']
if 'qr' in PV.name_index:
scalars.append('qr')
if 'nr' in PV.name_index:
scalars.append('nr')
if 'theta_rho' in DV.name_index:
scalars.append('theta_rho')
if 'thetali' in DV.name_index:
scalars.append('thetali')
for cond in conditions:
NS.add_profile('fraction_'+cond,Gr,Pa)
NS.add_profile('w_'+cond,Gr,Pa)
NS.add_profile('w2_'+cond,Gr,Pa)
for scalar in scalars:
NS.add_profile(scalar+'_'+cond,Gr,Pa)
NS.add_profile(scalar+'2_'+cond,Gr,Pa)
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
double [:] cloudmask = np.zeros(Gr.dims.npg,dtype=np.double, order='c')
double [:] coremask = np.zeros(Gr.dims.npg,dtype=np.double, order='c')
Py_ssize_t ql_shift = DV.get_varshift(Gr,'ql')
Py_ssize_t b_shift = DV.get_varshift(Gr,'buoyancy')
Py_ssize_t i,j,k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t count
double [:] mean_buoyancy
mean_buoyancy = Pa.HorizontalMean(Gr, &DV.values[b_shift])
with nogil:
count = 0
for i in range(imin,imax):
ishift = i * istride
for j in range(jmin,jmax):
jshift = j * jstride
for k in range(kmin,kmax):
ijk = ishift + jshift + k
if DV.values[ql_shift+ijk] > 0.0:
cloudmask[ijk] = 1.0
if DV.values[b_shift+ijk] > mean_buoyancy[k]:
coremask[ijk] = 1.0
cdef double [:] tmp
#Compute the statistics
#-fractions # cdef Py_ssize_t ths_shift = DV.get_varshift(Gr,'thetas')
tmp = Pa.HorizontalMean(Gr, &cloudmask[0])
NS.write_profile('fraction_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMean(Gr, &coremask[0])
NS.write_profile('fraction_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
#-w
cdef Py_ssize_t shift = PV.get_varshift(Gr, 'w')
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift], &cloudmask[0])
NS.write_profile('w_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &cloudmask[0])
NS.write_profile('w2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift], &coremask[0])
NS.write_profile('w_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &coremask[0])
NS.write_profile('w2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
#-qt
shift = PV.get_varshift(Gr, 'qt')
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift], &cloudmask[0])
NS.write_profile('qt_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &cloudmask[0])
NS.write_profile('qt2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift], &coremask[0])
NS.write_profile('qt_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &coremask[0])
NS.write_profile('qt2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
#-ql
shift = DV.get_varshift(Gr, 'ql')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('ql_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('ql2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('ql_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('ql2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
#-s
shift = PV.get_varshift(Gr,'s')
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift],&cloudmask[0])
NS.write_profile('s_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &cloudmask[0])
NS.write_profile('s2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &PV.values[shift], &coremask[0])
NS.write_profile('s_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &PV.values[shift], &PV.values[shift], &coremask[0])
NS.write_profile('s2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
if 'qr' in PV.name_index:
shift = PV.get_varshift(Gr, 'qr')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('qr_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('qr2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('qr_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('qr2_core' ,tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
if 'nr' in PV.name_index:
shift = PV.get_varshift(Gr, 'nr')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('nr_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('nr2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('nr_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('nr2_core' ,tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
if 'theta_rho' in DV.name_index:
shift = DV.get_varshift(Gr, 'theta_rho')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('theta_rho_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('theta_rho2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('theta_rho_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('theta_rho2_core' ,tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
if 'thetali' in DV.name_index:
shift = DV.get_varshift(Gr,'thetali')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('thetali_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('thetali2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('thetali_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('thetali2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
cdef:
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
double[:] data = np.empty((Gr.dims.npg,), dtype=np.double, order='c')
if 'thetas' in DV.name_index:
shift = DV.get_varshift(Gr,'thetas')
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &cloudmask[0])
NS.write_profile('thetas_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &cloudmask[0])
NS.write_profile('thetas2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &DV.values[shift], &coremask[0])
NS.write_profile('thetas_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &DV.values[shift], &DV.values[shift], &coremask[0])
NS.write_profile('thetas2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
else:
with nogil:
count = 0
for i in range(imin, imax):
ishift = i * istride
for j in range(jmin, jmax):
jshift = j * jstride
for k in range(kmin, kmax):
ijk = ishift + jshift + k
data[count] = thetas_c(PV.values[s_shift + ijk], PV.values[qt_shift + ijk])
count += 1
tmp = Pa.HorizontalMeanConditional(Gr, &data[0], &cloudmask[0])
NS.write_profile('thetas_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &data[0], &data[0], &cloudmask[0])
NS.write_profile('thetas2_cloud', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanConditional(Gr, &data[0], &coremask[0])
NS.write_profile('thetas_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMeanofSquaresConditional(Gr, &data[0], &data[0], &coremask[0])
NS.write_profile('thetas2_core', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
return
class StableBLStatistics:
def __init__(self,Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
#NS.add_ts('boundary_layer_height', Gr, Pa)
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, MomentumAdvection.MomentumAdvection MA,
MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
# cdef:
# double [:] total_flux = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
# Py_ssize_t d=2, i1, i,j,k, shift_flux
# double [:] flux_profile
#
# with nogil:
# for i1 in xrange(Gr.dims.dims-1):
# shift_flux = (i1*Gr.dims.dims + d) * Gr.dims.npg
# for i in xrange(Gr.dims.npg):
# total_flux[i] += (MA.flux[shift_flux + i] + MD.flux[shift_flux + i] ) * (MA.flux[shift_flux + i] + MD.flux[shift_flux + i] )
#
# for i in xrange(Gr.dims.npg):
# total_flux[i] = sqrt(total_flux[i])
#
# flux_profile = Pa.HorizontalMean(Gr,&total_flux[0])
#
# cdef:
# Py_ssize_t ustar_shift = DV.get_varshift_2d(Gr, 'friction_velocity')
# double flux_surface
# double [:] ustar2 = np.zeros(Gr.dims.nlg[0]*Gr.dims.nlg[1], dtype=np.double, order='c')
#
# with nogil:
# for i in xrange(Gr.dims.nlg[0]*Gr.dims.nlg[1]):
# ustar2[i] = DV.values_2d[ustar_shift + i] * DV.values_2d[ustar_shift + i]
#
# flux_surface = Pa.HorizontalMeanSurface(Gr,&ustar2[0])
#
# k=Gr.dims.gw
#
# while k < Gr.dims.nlg[2]-Gr.dims.gw and flux_profile[k] > 0.05 * flux_surface:
# k += 1
#
# h05 = Gr.zl_half[k]
# h0 = h05/0.95
#
# if np.isnan(h0):
# print('bl height is nan')
# h0 = 0.0
#
# NS.write_ts('boundary_layer_height', h0, Pa)
return
class SmokeStatistics:
def __init__(self,Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
NS.add_ts('boundary_layer_height', Gr, Pa)
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS,
ParallelMPI.ParallelMPI Pa):
#Here we compute the boundary layer height consistent with Bretherton et al. 1999
cdef:
Py_ssize_t i, j, k, ij, ij2d, ijk
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t level_1
Py_ssize_t level_2
Py_ssize_t smoke_shift = PV.get_varshift(Gr, 'smoke')
double [:] blh = np.zeros(Gr.dims.nlg[0]*Gr.dims.nlg[1], dtype=np.double, order='c')
double blh_mean
double smoke_1
double smoke_2
double z1
double z2
double dz
with nogil:
for i in xrange(Gr.dims.nlg[0]):
for j in xrange(Gr.dims.nlg[1]):
ij = i * istride + j * jstride
ij2d = i * Gr.dims.nlg[1] + j
level_1 = 0
level_2 = 0
for k in xrange(Gr.dims.nlg[2]):
ijk = ij + k
if PV.values[smoke_shift + ijk] > 0.5:
level_1 = k
level_2 = level_1 + 1
smoke_1 = PV.values[smoke_shift + ij + level_1]
smoke_2 = PV.values[smoke_shift + ij + level_2]
z1 = Gr.zl_half[level_1]
z2 = Gr.zl_half[level_2]
dz = (0.5 - smoke_1)/(smoke_2 - smoke_1)*(z2 - z1)
blh[ij2d] = z1 + dz
blh_mean = Pa.HorizontalMeanSurface(Gr, &blh[0])
NS.write_ts('boundary_layer_height', blh_mean, Pa)
return
class DYCOMSStatistics:
def __init__(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
NS.add_ts('boundary_layer_height', Gr, Pa)
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS,
ParallelMPI.ParallelMPI Pa):
#Here we compute the boundary layer height consistent with Bretherton et al. 1999
cdef:
Py_ssize_t i, j, k, ij, ij2d, ijk
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t level_1
Py_ssize_t level_2
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
double [:] blh = np.zeros(Gr.dims.nlg[0]*Gr.dims.nlg[1], dtype=np.double, order='c')
double blh_mean
double qt_1
double qt_2
double z1
double z2
double dz
with nogil:
for i in xrange(Gr.dims.nlg[0]):
for j in xrange(Gr.dims.nlg[1]):
ij = i * istride + j * jstride
ij2d = i * Gr.dims.nlg[1] + j
level_1 = 0
level_2 = 0
for k in xrange(Gr.dims.nlg[2]):
ijk = ij + k
if PV.values[qt_shift+ ijk] >= 0.005:
level_1 = k
level_2 = level_1 + 1
qt_1 = PV.values[qt_shift + ij + level_1]
qt_2 = PV.values[qt_shift+ ij + level_2]
z1 = Gr.zl_half[level_1]
z2 = Gr.zl_half[level_2]
dz = (0.005 - qt_1)/(qt_2 - qt_1)*(z2 - z1)
blh[ij2d] = z1 + dz
blh_mean = Pa.HorizontalMeanSurface(Gr, &blh[0])
NS.write_ts('boundary_layer_height', blh_mean, Pa)
return
class TKEStatistics:
def __init__(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
NS.add_ts('tke_int_z', Gr, Pa)
NS.add_ts('tke_nd_int_z', Gr, Pa)
NS.add_profile('tke_mean', Gr, Pa)
NS.add_profile('tke_nd_mean', Gr, Pa)
NS.add_profile('tke_prod_B', Gr, Pa)
NS.add_profile('tke_prod_S', Gr, Pa)
NS.add_profile('tke_prod_P', Gr, Pa)
NS.add_profile('tke_prod_T', Gr, Pa)
NS.add_profile('tke_prod_A', Gr, Pa)
NS.add_profile('tke_prod_D', Gr, Pa)
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS,
ParallelMPI.ParallelMPI Pa):
#Here we compute the boundary layer height consistent with Bretherton et al. 1999
cdef:
Py_ssize_t i, j, k, ij, ij2d, ijk
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ishift
Py_ssize_t jshift
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t w_shift = PV.get_varshift(Gr, 'w')
Py_ssize_t b_shift = DV.get_varshift(Gr,'buoyancy')
Py_ssize_t p_shift = DV.get_varshift(Gr, 'dynamic_pressure')
Py_ssize_t visc_shift = DV.get_varshift(Gr, 'viscosity')
double [:] uc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] up = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] ucp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vcp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wcp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] upup = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] upvp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] upwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vpvp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vpwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wpwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] uppp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vppp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wppp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wpep = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wpbp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] tke = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] tke_nd = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
#double [:] epup = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
#double [:] epvp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] epwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] e_adv = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] e_dis = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] tke_S = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] tke_P = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] tke_T = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
#Interpolate to cell centers
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
uc[ijk] = 0.5 * (PV.values[u_shift + ijk - istride] + PV.values[u_shift + ijk])
vc[ijk] = 0.5 * (PV.values[v_shift + ijk - jstride] + PV.values[v_shift + ijk])
wc[ijk] = 0.5 * (PV.values[w_shift + ijk - 1] + PV.values[w_shift + ijk])
#Compute the horizontal means of the cell centered velocities
cdef:
double [:] ucmean = Pa.HorizontalMean(Gr, &uc[0])
double [:] vcmean = Pa.HorizontalMean(Gr, &vc[0])
double [:] wcmean = Pa.HorizontalMean(Gr, &wc[0])
double [:] bmean = Pa.HorizontalMean(Gr, &DV.values[b_shift])
double [:] pmean = Pa.HorizontalMean(Gr, &DV.values[p_shift])
double bp, pp
#Compute the TKE
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
#Compute fluctuations
up[ijk] = uc[ijk] - ucmean[k]
vp[ijk] = vc[ijk] - vcmean[k]
wp[ijk] = wc[ijk] - wcmean[k]
bp = DV.values[b_shift + ijk] - bmean[k]
pp = DV.values[p_shift + ijk] - pmean[k]
#Coumpute fluctuation products
upup[ijk] = up[ijk] * up[ijk]
upvp[ijk] = up[ijk] * vp[ijk]
upwp[ijk] = up[ijk] * wp[ijk]
vpvp[ijk] = vp[ijk] * vp[ijk]
vpwp[ijk] = vp[ijk] * wp[ijk]
wpwp[ijk] = wp[ijk] * wp[ijk]
uppp[ijk] = up[ijk] * pp
vppp[ijk] = vp[ijk] * pp
wppp[ijk] = wp[ijk] * pp
tke_nd[ijk] = 0.5 * (upup[ijk] + vpvp[ijk] + wpwp[ijk])
tke[ijk] = RS.rho0[k] * tke_nd[ijk]
wpbp[ijk] = wp[ijk] * bp
cdef:
double [:] upup_mean = Pa.HorizontalMean(Gr, &upup[0])
double [:] upvp_mean = Pa.HorizontalMean(Gr, &upvp[0])
double [:] upwp_mean = Pa.HorizontalMean(Gr, &upwp[0])
double [:] vpvp_mean = Pa.HorizontalMean(Gr, &vpvp[0])
double [:] vpwp_mean = Pa.HorizontalMean(Gr, &vpwp[0])
double [:] wpwp_mean = Pa.HorizontalMean(Gr, &wpwp[0])
double [:] wppp_mean = Pa.HorizontalMean(Gr, &wppp[0])
double [:] tke_mean = Pa.HorizontalMean(Gr, &tke_nd[0])
double [:] tkemean = Pa.HorizontalMean(Gr, &tke[0])
double [:] tkendmean = Pa.HorizontalMean(Gr, &tke_nd[0])
double [:] tke_B = Pa.HorizontalMean(Gr, &wpbp[0])
#Compute the Shear Production
with nogil:
for k in xrange(1, Gr.dims.nlg[2]-1):
tke_S[k] -= upwp_mean[k] * (ucmean[k+1] - ucmean[k-1]) * 0.5 * Gr.dims.dxi[2]
tke_S[k] -= vpwp_mean[k] * (vcmean[k+1] - vcmean[k-1]) * 0.5 * Gr.dims.dxi[2]
#Compute Pressure Work
with nogil:
for k in xrange(1, Gr.dims.nlg[2]-1):
tke_P[k] -= (wppp_mean[k+1] * RS.alpha0[k+1] - wppp_mean[k-1]* RS.alpha0[k-1])* 0.5 * Gr.dims.dxi[2]
#Compute the Turbulent transport
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
epwp[ijk] = (wc[ijk] - wcmean[k])*(tke_nd[ijk] - tke_mean[k])
cdef:
double [:] epwp_mean = Pa.HorizontalMean(Gr, &epwp[0])
#Compute Turbulent Transport
with nogil:
for k in xrange(1, Gr.dims.nlg[2] -1):
tke_T[k] -= (epwp_mean[k+1] - epwp_mean[k-1]) * 0.5 * Gr.dims.dxi[2]
#Compute Mean Advection
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
e_adv[ijk] -= ucmean[k] * (tke_nd[ijk+istride] - tke_nd[ijk-istride])*0.5*Gr.dims.dxi[0]
e_adv[ijk] -= vcmean[k] * (tke_nd[ijk+jstride] - tke_nd[ijk-jstride])*0.5*Gr.dims.dxi[1]
cdef:
double [:] tke_A = Pa.HorizontalMean(Gr, &e_adv[0])
double nu
#Compute the dissipation of TKE
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
nu = DV.values[visc_shift + ijk]
e_dis[ijk] += (up[ijk + istride] - up[ijk-istride]) * 0.5 * Gr.dims.dxi[0] * (up[ijk + istride] - up[ijk-istride]) * 0.5 * Gr.dims.dxi[0]
e_dis[ijk] += (vp[ijk + jstride] - vp[ijk-jstride]) * 0.5 * Gr.dims.dxi[1] * (vp[ijk + jstride] - vp[ijk-jstride]) * 0.5 * Gr.dims.dxi[1]
e_dis[ijk] += (wp[ijk + 1] - wp[ijk-1]) * 0.5 * Gr.dims.dxi[2] * (wp[ijk + 1] - wp[ijk-1]) * 0.5 * Gr.dims.dxi[2]
e_dis[ijk] *= nu
cdef:
double [:] tke_D = Pa.HorizontalMean(Gr, &e_dis[0])
#Write data
NS.write_profile('tke_mean', tkemean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_nd_mean', tkendmean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_ts('tke_int_z', np.sum(tkemean[Gr.dims.gw:-Gr.dims.gw])*Gr.dims.dx[2], Pa)
NS.write_ts('tke_nd_int_z', np.sum(tkendmean[Gr.dims.gw:-Gr.dims.gw])*Gr.dims.dx[2],Pa)
NS.write_profile('tke_prod_B', tke_B[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_prod_S', tke_S[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_prod_P', tke_P[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_prod_T', tke_T[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_prod_A', tke_A[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('tke_prod_D', tke_D[Gr.dims.gw:-Gr.dims.gw], Pa)
return
class FluxStatistics:
def __init__(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
scalar_list = []
if 'theta' in DV.name_index:
scalar_list.append('theta')
else:
scalar_list.append('thetali')
if 'buoyancy' in DV.name_index:
scalar_list.append('buoyancy')
for name in scalar_list:
NS.add_profile('resolved_x_flux_'+name, Gr, Pa)
NS.add_profile('resolved_y_flux_'+name, Gr, Pa)
NS.add_profile('resolved_z_flux_'+name, Gr, Pa)
NS.add_profile('sgs_x_flux_'+name, Gr, Pa)
NS.add_profile('sgs_y_flux_'+name, Gr, Pa)
NS.add_profile('sgs_z_flux_'+name, Gr, Pa)
NS.add_profile('resolved_x_vel_flux', Gr, Pa)
NS.add_profile('resolved_y_vel_flux', Gr, Pa)
return
def stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV,
MomentumAdvection.MomentumAdvection MA, MomentumDiffusion.MomentumDiffusion MD, NetCDFIO_Stats NS,
ParallelMPI.ParallelMPI Pa):
#Here we compute the boundary layer height consistent with Bretherton et al. 1999
cdef:
Py_ssize_t i, j, k, ij, ij2d, ijk
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ishift
Py_ssize_t jshift
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t w_shift = PV.get_varshift(Gr, 'w')
Py_ssize_t b_shift = DV.get_varshift(Gr, 'buoyancy')
Py_ssize_t th_shift
Py_ssize_t diff_shift = DV.get_varshift(Gr, 'diffusivity')
double bp, thp
double [:] uc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wc = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] up = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] wp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] upwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] vpwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] bpup = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] bpvp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] bpwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] thpup = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] thpvp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] thpwp = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] b_xsgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] b_ysgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] b_zsgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] th_xsgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] th_ysgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
double [:] th_zsgs = np.zeros(Gr.dims.nlg[0]* Gr.dims.nlg[1]* Gr.dims.nlg[2], dtype=np.double, order='c')
if 'theta' in DV.name_index:
th_shift = DV.get_varshift(Gr,'theta')
else:
th_shift = DV.get_varshift(Gr,'thetali')
#Interpolate to cell centers
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
uc[ijk] = 0.5 * (PV.values[u_shift + ijk - istride] + PV.values[u_shift + ijk])
vc[ijk] = 0.5 * (PV.values[v_shift + ijk - jstride] + PV.values[v_shift + ijk])
wc[ijk] = 0.5 * (PV.values[w_shift + ijk - 1] + PV.values[w_shift + ijk])
#Compute the horizontal means of the cell centered velocities
cdef:
double [:] ucmean = Pa.HorizontalMean(Gr, &uc[0])
double [:] vcmean = Pa.HorizontalMean(Gr, &vc[0])
double [:] wcmean = Pa.HorizontalMean(Gr, &wc[0])
double [:] bmean = Pa.HorizontalMean(Gr, &DV.values[b_shift])
double [:] thmean = Pa.HorizontalMean(Gr, &DV.values[th_shift])
#Compute the fluxes
with nogil:
for i in xrange(1, Gr.dims.nlg[0]-1):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]-1):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]-1):
ijk = ishift + jshift + k
#Compute fluctuations
up[ijk] = uc[ijk] - ucmean[k]
vp[ijk] = vc[ijk] - vcmean[k]
wp[ijk] = wc[ijk] - wcmean[k]
bp = DV.values[b_shift + ijk] - bmean[k]
thp = DV.values[th_shift + ijk] - thmean[k]
upwp[ijk] = up[ijk] * wp[ijk]
vpwp[ijk] = vp[ijk] * wp[ijk]
bpup[ijk] = bp * up[ijk]
bpvp[ijk] = bp * vp[ijk]
bpwp[ijk] = bp * wp[ijk]
thpup[ijk] = thp * up[ijk]
thpvp[ijk] = thp * vp[ijk]
thpwp[ijk] = thp * wp[ijk]
b_xsgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[b_shift + ijk + istride] - DV.values[b_shift + ijk -istride]) * Gr.dims.dxi[0] * 0.5
b_ysgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[b_shift + ijk + jstride] - DV.values[b_shift + ijk -jstride]) * Gr.dims.dxi[1] * 0.5
b_zsgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[b_shift + ijk + 1] - DV.values[b_shift + ijk -1]) * Gr.dims.dxi[2] * 0.5
th_xsgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[th_shift + ijk + istride] - DV.values[th_shift + ijk -istride]) * Gr.dims.dxi[0] * 0.5
th_ysgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[th_shift + ijk + jstride] - DV.values[th_shift + ijk -jstride]) * Gr.dims.dxi[1] * 0.5
th_zsgs[ijk] = -DV.values[diff_shift+ijk] * (DV.values[th_shift + ijk + 1] - DV.values[th_shift + ijk -1]) * Gr.dims.dxi[2] * 0.5
cdef:
double [:] thpup_mean = Pa.HorizontalMean(Gr, &thpup[0])
double [:] thpvp_mean = Pa.HorizontalMean(Gr, &thpvp[0])
double [:] thpwp_mean = Pa.HorizontalMean(Gr, &thpwp[0])
double [:] bpup_mean = Pa.HorizontalMean(Gr, &bpup[0])
double [:] bpvp_mean = Pa.HorizontalMean(Gr, &bpvp[0])
double [:] bpwp_mean = Pa.HorizontalMean(Gr, &bpwp[0])
double [:] upwp_mean = Pa.HorizontalMean(Gr, &upwp[0])
double [:] vpwp_mean = Pa.HorizontalMean(Gr, &vpwp[0])
double [:] th_xsgs_mean = Pa.HorizontalMean(Gr, &th_xsgs[0])
double [:] th_ysgs_mean = Pa.HorizontalMean(Gr, &th_ysgs[0])
double [:] th_zsgs_mean = Pa.HorizontalMean(Gr, &th_zsgs[0])
double [:] b_xsgs_mean = Pa.HorizontalMean(Gr, &b_xsgs[0])
double [:] b_ysgs_mean = Pa.HorizontalMean(Gr, &b_ysgs[0])
double [:] b_zsgs_mean = Pa.HorizontalMean(Gr, &b_zsgs[0])
if 'theta' in DV.name_index:
NS.write_profile('resolved_x_flux_theta', thpup_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_y_flux_theta', thpvp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_z_flux_theta', thpwp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_x_flux_theta', th_xsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_y_flux_theta', th_ysgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_z_flux_theta', th_zsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
else:
NS.write_profile('resolved_x_flux_thetali', thpup_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_y_flux_thetali', thpvp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_z_flux_thetali', thpwp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_x_flux_thetali', th_xsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_y_flux_thetali', th_ysgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_z_flux_thetali', th_zsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_x_flux_buoyancy', bpup_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_y_flux_buoyancy', bpvp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_z_flux_buoyancy', bpwp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_x_flux_buoyancy', b_xsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_y_flux_buoyancy', b_ysgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('sgs_z_flux_buoyancy', b_zsgs_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_x_vel_flux', upwp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_profile('resolved_y_vel_flux', vpwp_mean[Gr.dims.gw:-Gr.dims.gw], Pa)
return