This repository has been archived by the owner on May 23, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathstreamingApm.py
executable file
·258 lines (201 loc) · 8.48 KB
/
streamingApm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python
############################################################################
# #
# Copyright 2014 Prelert Ltd #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# #
############################################################################
'''
This script creates a new job and uploads to it APM data records
generated from existing data in a CSV file. New records will created
indefinitely or until the 'duration' argument expires. Each record has
a new timestamp so this script can be used to repeatedly replay the
historical data. After each upload of data the script requests any new
bucket results and prints them.
The script is invoked with 1 positional argument -the CSV file containing
APM to use a the source of the generated data- and optional arguments
to specify the location of the Engine API. Run the script with '--help'
to see the options.
The file used in the online example can be downloaded from
http://s3.amazonaws.com/prelert_demo/network.csv
If no 'duration' is set the script will run indefinitely cse Ctrl-C to
stop the script - the interrupt is caught and the job closed gracefully
'''
import argparse
import csv
import json
import logging
import sys
import time
from datetime import datetime, timedelta, tzinfo
from prelert.engineApiClient import EngineApiClient
# Default connection prarams
HOST = 'localhost'
PORT = 8080
BASE_URL = 'engine/v2'
ZERO_OFFSET = timedelta(0)
class UtcOffset(tzinfo):
'''
Timezone object at 0 (UTC) offset
'''
def utcoffset(self, dt):
return ZERO_OFFSET
def tzname(self, dt):
return "UTC"
def dst(self, dt):
return ZERO_OFFSET
def parseArguments():
parser = argparse.ArgumentParser()
parser.add_argument("--host", help="The Prelert Engine API host, defaults to "
+ HOST, default=HOST)
parser.add_argument("--port", help="The Prelert Engine API port, defaults to "
+ str(PORT), default=PORT)
parser.add_argument("--duration", help="The number of hours to generate \
data for. If not set script will produce records from the historical \
start date until the time now", type=int, default=0)
parser.add_argument("file", help="Path to APM data")
return parser.parse_args()
def generateRecords(csv_filename, start_date, interval, end_date):
'''
Generator function reads csv data file and returns records
with an updated timestamp on demand.
Records are read from a file and stored in a local array, once
all the records have been read the function does not loop
round to the beginning again instead it flips and outputs
the records in reverse order and so on.
The csv file must contain a field with the name 'time'
'''
csv_data = []
csv_file = open(csv_filename, 'rb')
reader = csv.reader(csv_file)
header = reader.next()
time_field_idx = -1
for i in range(len(header)):
if header[i] == 'time':
time_field_idx = i
break
if time_field_idx == -1:
logging.error("Cannot find 'time' field in csv header")
return
reverse = False
while start_date < end_date:
try:
yield header
if len(csv_data) == 0:
# populate csv_data record
for row in reader:
row[time_field_idx] = start_date.isoformat()
start_date += interval
csv_data.append(row)
yield row
if start_date > end_date:
break
csv_file.close()
else:
if reverse:
for row in reversed(csv_data):
row[time_field_idx] = start_date.isoformat()
start_date += interval
yield row
if start_date > end_date:
break
else:
for row in csv_data:
row[time_field_idx] = start_date.isoformat()
start_date += interval
yield row
if start_date > end_date:
break
reverse = not reverse
except KeyboardInterrupt:
raise StopIteration
def main():
args = parseArguments()
start_date = datetime(2014, 05, 18, 0, 0, 0, 0, UtcOffset())
# interval between the generated timestamps for the records
interval = timedelta(seconds=300)
if args.duration <= 0:
end_date = datetime.now(UtcOffset())
else:
duration = timedelta(hours=args.duration)
end_date = start_date + duration
job_config = '{\
"analysisConfig" : {\
"bucketSpan":3600,\
"detectors" :[\
{"fieldName":"In Discards","byFieldName":"host"},\
{"fieldName":"In Octets","byFieldName":"host"},\
{"fieldName":"Out Discards","byFieldName":"host"},\
{"fieldName":"Out Octets","byFieldName":"host"} \
]\
},\
"dataDescription" : {\
"fieldDelimiter":",",\
"timeField":"time",\
"timeFormat":"yyyy-MM-dd\'T\'HH:mm:ssXXX"\
}\
}'
engine_client = EngineApiClient(args.host, BASE_URL, args.port)
(http_status_code, response) = engine_client.createJob(job_config)
if http_status_code != 201:
print (http_status_code, json.dumps(response))
return
job_id = response['id']
print 'Job created with Id = ' + job_id
# get the csv header (the first record generated)
record_generator = generateRecords(args.file, start_date, interval, end_date)
header = ','.join(next(record_generator))
header += '\n'
count = 0
try:
# for the results
next_bucket_id = 1
print
print "Date,Anomaly Score,Max Normalized Probablility"
data = header
for record in record_generator:
# format as csv and append new line
csv = ','.join(record) + '\n'
data += csv
# print data
count += 1
if count == 100:
(http_status_code, response) = engine_client.upload(job_id, data)
if http_status_code != 202:
print (http_status_code, json.dumps(response))
break
# get the latest results...
(http_status_code, response) = engine_client.getBucketsByDate(job_id=job_id,
start_date=str(next_bucket_id), end_date=None)
if http_status_code != 200:
print (http_status_code, json.dumps(response))
break
# and print them
for bucket in response:
print "{0},{1},{2},{3}".format(bucket['timestamp'],
bucket['anomalyScore'], bucket['maxNormalizedProbability'])
if len(response) > 0:
next_bucket_id = int(response[-1]['id']) + 1
# must send the header every time
data = header
count = 0
# sleep a little while (optional this can be removed)
#time.sleep(0.1)
except KeyboardInterrupt:
print "Keyboard interrupt closing job..."
(http_status_code, response) = engine_client.close(job_id)
if http_status_code != 202:
print (http_status_code, json.dumps(response))
if __name__ == "__main__":
main()