forked from vedanthv/MusicHealsTheSoul
-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
43 lines (30 loc) · 1.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
import cv2
import matplotlib.pyplot as plt
from deepface import DeepFace
# from deepface import DeepFace
import streamlit as st
import test
header = st.beta_container()
inp = st.beta_container()
pred = st.beta_container()
with header:
st.title('Emotion Detection and Song Recommendation')
st.text('Aim : To detect the emotion of the person and predict a song')
with inp:
st.title("Taking the face of the user as input")
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
page = st.sidebar.selectbox("Input or Predict", ("Input", "Predict"))
if page == "Input":
test.take_input()
#else:
#show_explore_page()
with pred:
st.title("Prediction")
img = cv2.imread('photo.jpg')
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
predictions = DeepFace.analyze(img)
st.text("Your emotion is {}".format(predictions['dominant_emotion']))
if(predictions['dominant_emotion'] == 'happy'):
my_html = '<iframe src="https://open.spotify.com/embed/playlist/37i9dQZF1DWWQRwui0ExPn" width="300" height="380" frameborder="0" allowtransparency="true" allow="encrypted-media"></iframe>'
st.markdown(my_html, unsafe_allow_html=True)