-
Notifications
You must be signed in to change notification settings - Fork 0
/
counting-bits.cpp
65 lines (50 loc) · 1.13 KB
/
counting-bits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
//question//
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
/solutuion//
class Solution {
public:
int counting(int n)
{
int count=0;
while(n>0)
{
int rem = n%2;
if(rem==1)
{
count++;
}
n = n/2;
}
return count;
}
vector<int> countBits(int n) {
vector<int> v;
for(int i=0;i<=n;i++)
{
v.push_back(counting(i));
}
return v;
}
};