diff --git a/open-reac/README.md b/open-reac/README.md index aa739ab8..a478bea1 100644 --- a/open-reac/README.md +++ b/open-reac/README.md @@ -177,12 +177,11 @@ phase shift transformer on the same branch. #### 4.4 P/Q units' domain The following corrections apply successively to determine consistent domains for the active -power and reactive power produced by generators. Please note that in the end, the corrected bounds are rectangular -(not trapezoidal), and they are used only in the reactive OPF (see [7](#7-alternative-current-optimal-power-flow)). +power and reactive power produced by generators. To determine the consistent domain of produced active power, the bounds of the domains $P_g^{min}$ and $P_g^{max}$, as well as the target $P_g^{t}$ of generator $g$ (all specified in `ampl_network_generators.txt`) are used. -Let $P_{g}^{min,c}$ and $P_{g}^{max,c}$ be the corrected active bounds : +Let $P_{g}^{min,c}$ and $P_{g}^{max,c}$ be the corrected active bounds: - By default, $P_{g}^{min,c} = \text{defaultPmin}$ and $P_{g}^{max,c} = \text{defaultPmax}$ (see [3.2](#32-configuration-of-the-run)) - If $|P_g^{max}| \geq \text{PQmax}$, then $P_{g}^{max,c} = \max(\text{defaultPmax}, P_g^t)$ @@ -190,22 +189,30 @@ Let $P_{g}^{min,c}$ and $P_{g}^{max,c}$ be the corrected active bounds : - If $|P_{g}^{max,c} - P_{g}^{min,c}| \leq \text{minimalQPrange}$, then $P_{g}^{max,c} = P_{g}^{min,c} = P_{g}^t$ (active power is fixed). To determine the consistent domain of produced reactive power, the reactive power diagram -(`specified in ampl_network_generators.txt`) of generator -$g$ est utilisé : $qp_g$ (resp. $qP_g$) and $Qp_g$ ($QP_g$) when $P_{g}^{min,c}$ (resp. P_{g}^{max,c}) is reached. +(specified in `ampl_network_generators.txt`) of generator +$g$ is used : $qp_g$ (resp. $qP_g$) and $Qp_g$ ($QP_g$) when $P_{g}^{min,c}$ (resp. $P_{g}^{max,c}$) is reached. Let $qp_g^c$ (resp. $qP_g^c$) and $Qp_g^c$ (resp. $QP_g^c$) be the bounds of the corrected reactive diagram, -and $Q_{g}^{min,c}$ and $Q_{g}^{max,c}$ be the corrected reactive bounds : +and $Q_{g}^{min,c}$ and $Q_{g}^{max,c}$ be the corrected reactive bounds: - By default, $qp_g^{c} = qP_{g}^{c} = - \text{defaultPmin} \times \text{defaultQmaxPmaxRatio}$ and $Qp_{g}^{c} = QP_{g}^{c} = \text{defaultPmax} \times \text{defaultQmaxPmaxRatio}$ (see [3.2](#32-configuration-of-the-run)) - If $|qp_{g}| \geq \text{PQmax}$, then $qp_{g}^{c} = -\text{defaultQmaxPmaxRatio} \times P_{max}^{g,c}$. - Same with $qP_{g}^{c}$ + Same with $qP_{g}^{c}$. - If $|Qp_{g}| \geq \text{PQmax}$, then $Qp_{g}^{c} = \text{defaultQmaxPmaxRatio} \times P_{max}^{g,c}$. - Same with $QP_{g}^{c}$ -- If $qp_{g}^{c} > Qp_{g}^{c}$, the values are swapped. Same with $qP_{g}^{c}$ and $QP_{g}^{c}$ -- If the corrected reactive diagram is too small (distance between extremal values lower than $\text{minimalQPrange}$), + Same with $QP_{g}^{c}$. +- If $qp_{g}^{c} > Qp_{g}^{c}$, the values are swapped. Same with $qP_{g}^{c}$ and $QP_{g}^{c}$. +- If the corrected reactive diagram is too small (the distances between the vertices of the reactive diagram are lower than $\text{minimalQPrange}$), then $qp_{g}^{c} = Qp_{g}^{c} = qP_{g}^{c} = QP_{g}^{c} = \frac{qp_{g}^{c} + Qp_{g}^{c} + qP_{g}^{c} + QP_{g}^{c}}{4}$ (reactive power is fixed). - $Q_{g}^{min,c} = \min(qp_{g}^{c}, qP_{g}^{c})$ and $Q_{g}^{max,c} = \min(Qp_{g}^{c}, QP_{g}^{c})$ +Please note that in the end, the corrected bounds are rectangular +(not trapezoidal), and they are used only in the reactive OPF +(see [7](#7-alternative-current-optimal-power-flow)). +The general correction of the generator's reactive power diagram $g$ +is illustrated in the following figure: + +TODO : add figure. + ### 5 Slack bus & main connex component The slack bus $s$ is determined by identifying the bus with the highest number of AC branches connected,