forked from ARM-software/ML-KWS-for-MCU
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquant_models.py
340 lines (301 loc) · 14.5 KB
/
quant_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modifications Copyright 2017 Arm Inc. All Rights Reserved.
# Added new model definitions for speech command recognition used in
# the paper: https://arxiv.org/pdf/1711.07128.pdf
# Added Quantized model definitions
#
"""Model definitions for simple speech recognition.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import layers
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import variable_scope as vs
def prepare_model_settings(label_count, sample_rate, clip_duration_ms,
window_size_ms, window_stride_ms,
dct_coefficient_count):
"""Calculates common settings needed for all models.
Args:
label_count: How many classes are to be recognized.
sample_rate: Number of audio samples per second.
clip_duration_ms: Length of each audio clip to be analyzed.
window_size_ms: Duration of frequency analysis window.
window_stride_ms: How far to move in time between frequency windows.
dct_coefficient_count: Number of frequency bins to use for analysis.
Returns:
Dictionary containing common settings.
"""
desired_samples = int(sample_rate * clip_duration_ms / 1000)
window_size_samples = int(sample_rate * window_size_ms / 1000)
window_stride_samples = int(sample_rate * window_stride_ms / 1000)
length_minus_window = (desired_samples - window_size_samples)
if length_minus_window < 0:
spectrogram_length = 0
else:
spectrogram_length = 1 + int(length_minus_window / window_stride_samples)
fingerprint_size = dct_coefficient_count * spectrogram_length
return {
'desired_samples': desired_samples,
'window_size_samples': window_size_samples,
'window_stride_samples': window_stride_samples,
'spectrogram_length': spectrogram_length,
'dct_coefficient_count': dct_coefficient_count,
'fingerprint_size': fingerprint_size,
'label_count': label_count,
'sample_rate': sample_rate,
}
def create_model(fingerprint_input, model_settings, model_architecture,
model_size_info, act_max, is_training, \
runtime_settings=None):
"""Builds a model of the requested architecture compatible with the settings.
There are many possible ways of deriving predictions from a spectrogram
input, so this function provides an abstract interface for creating different
kinds of models in a black-box way. You need to pass in a TensorFlow node as
the 'fingerprint' input, and this should output a batch of 1D features that
describe the audio. Typically this will be derived from a spectrogram that's
been run through an MFCC, but in theory it can be any feature vector of the
size specified in model_settings['fingerprint_size'].
The function will build the graph it needs in the current TensorFlow graph,
and return the tensorflow output that will contain the 'logits' input to the
softmax prediction process. If training flag is on, it will also return a
placeholder node that can be used to control the dropout amount.
See the implementations below for the possible model architectures that can be
requested.
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
model_settings: Dictionary of information about the model.
model_architecture: String specifying which kind of model to create.
is_training: Whether the model is going to be used for training.
runtime_settings: Dictionary of information about the runtime.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
Raises:
Exception: If the architecture type isn't recognized.
"""
if model_architecture == 'dnn':
return create_dnn_model(fingerprint_input, model_settings, model_size_info,
act_max, is_training)
elif model_architecture == 'ds_cnn':
return create_ds_cnn_model(fingerprint_input, model_settings,
model_size_info, act_max, is_training)
else:
raise Exception('model_architecture argument "' + model_architecture +
'" not recognized, should be one of "single_fc", "conv",' +
' "low_latency_conv", "low_latency_svdf",'+
' "dnn", "cnn", "basic_lstm", "lstm",'+
' "gru", "crnn" or "ds_cnn"')
def load_variables_from_checkpoint(sess, start_checkpoint):
"""Utility function to centralize checkpoint restoration.
Args:
sess: TensorFlow session.
start_checkpoint: Path to saved checkpoint on disk.
"""
saver = tf.train.Saver(tf.global_variables())
saver.restore(sess, start_checkpoint)
def create_dnn_model(fingerprint_input, model_settings, model_size_info,
act_max, is_training):
"""Builds a model with multiple hidden fully-connected layers.
model_size_info: length of the array defines the number of hidden-layers and
each element in the array represent the number of neurons
in that layer
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
fingerprint_size = model_settings['fingerprint_size']
label_count = model_settings['label_count']
num_layers = len(model_size_info)
layer_dim = [fingerprint_size]
layer_dim.extend(model_size_info)
flow = fingerprint_input
if(act_max[0]!=0):
flow = tf.fake_quant_with_min_max_vars(flow, min=-act_max[0], \
max=act_max[0]-(act_max[0]/128.0), num_bits=8)
for i in range(1, num_layers + 1):
with tf.variable_scope('fc'+str(i)):
W = tf.get_variable('W', shape=[layer_dim[i-1], layer_dim[i]],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable('b', shape=[layer_dim[i]])
flow = tf.matmul(flow, W) + b
if(act_max[i]!=0):
flow = tf.fake_quant_with_min_max_vars(flow, min=-act_max[i], \
max=act_max[i]-(act_max[i]/128.0), num_bits=8)
flow = tf.nn.relu(flow)
if is_training:
flow = tf.nn.dropout(flow, dropout_prob)
weights = tf.get_variable('final_fc', shape=[layer_dim[-1], label_count],
initializer=tf.contrib.layers.xavier_initializer())
bias = tf.Variable(tf.zeros([label_count]))
logits = tf.matmul(flow, weights) + bias
if(act_max[num_layers+1]!=0):
logits = tf.fake_quant_with_min_max_vars(logits, min=-act_max[num_layers+1], \
max=act_max[num_layers+1]-(act_max[num_layers+1]/128.0), num_bits=8)
if is_training:
return logits, dropout_prob
else:
return logits
def create_ds_cnn_model(fingerprint_input, model_settings, model_size_info,
act_max, is_training):
"""Builds a model with depthwise separable convolutional neural network
Model definition is based on https://arxiv.org/abs/1704.04861 and
Tensorflow implementation: https://github.com/Zehaos/MobileNet
model_size_info: defines number of layers, followed by the DS-Conv layer
parameters in the order {number of conv features, conv filter height,
width and stride in y,x dir.} for each of the layers.
Note that first layer is always regular convolution, but the remaining
layers are all depthwise separable convolutions.
"""
def ds_cnn_arg_scope(weight_decay=0):
"""Defines the default ds_cnn argument scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
Returns:
An `arg_scope` to use for the DS-CNN model.
"""
with slim.arg_scope(
[slim.convolution2d, slim.separable_convolution2d],
weights_initializer=slim.initializers.xavier_initializer(),
biases_initializer=slim.init_ops.zeros_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay)) as sc:
return sc
def _depthwise_separable_conv(inputs,
num_pwc_filters,
sc,
kernel_size,
stride,
layer_no,
act_max):
""" Helper function to build the depth-wise separable convolution layer.
"""
# skip pointwise by setting num_outputs=None
depthwise_conv = slim.separable_convolution2d(inputs,
num_outputs=None,
stride=stride,
depth_multiplier=1,
kernel_size=kernel_size,
scope=sc+'/dw_conv',
reuse=tf.AUTO_REUSE)
if(act_max[2*layer_no]>0):
depthwise_conv = tf.fake_quant_with_min_max_vars(depthwise_conv,
min=-act_max[2*layer_no],
max=act_max[2*layer_no]-(act_max[2*layer_no]/128.0),
num_bits=8, name='quant_ds_conv'+str(layer_no))
bn = tf.nn.relu(depthwise_conv)
# batch-norm weights folded into depthwise conv
# bn = slim.batch_norm(depthwise_conv, scope=sc+'/dw_conv/batch_norm')
pointwise_conv = slim.convolution2d(bn,
num_pwc_filters,
kernel_size=[1, 1],
scope=sc+'/pw_conv',
reuse=tf.AUTO_REUSE)
if(act_max[2*layer_no+1]>0):
pointwise_conv = tf.fake_quant_with_min_max_vars(pointwise_conv,
min=-act_max[2*layer_no+1],
max=act_max[2*layer_no+1]-(act_max[2*layer_no+1]/128.0),
num_bits=8, name='quant_pw_conv'+str(layer_no+1))
bn = tf.nn.relu(pointwise_conv)
# batch-norm weights folded into pointwise conv
# bn = slim.batch_norm(pointwise_conv, scope=sc+'/pw_conv/batch_norm')
return bn
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
label_count = model_settings['label_count']
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size, 1])
t_dim = input_time_size
f_dim = input_frequency_size
#Extract model dimensions from model_size_info
num_layers = model_size_info[0]
conv_feat = [None]*num_layers
conv_kt = [None]*num_layers
conv_kf = [None]*num_layers
conv_st = [None]*num_layers
conv_sf = [None]*num_layers
i=1
for layer_no in range(0,num_layers):
conv_feat[layer_no] = model_size_info[i]
i += 1
conv_kt[layer_no] = model_size_info[i]
i += 1
conv_kf[layer_no] = model_size_info[i]
i += 1
conv_st[layer_no] = model_size_info[i]
i += 1
conv_sf[layer_no] = model_size_info[i]
i += 1
scope = 'DS-CNN'
with tf.variable_scope(scope) as sc:
end_points_collection = sc.name + '_end_points'
with slim.arg_scope([slim.convolution2d, slim.separable_convolution2d],
activation_fn=None,
weights_initializer=slim.initializers.xavier_initializer(),
biases_initializer=slim.init_ops.zeros_initializer(),
outputs_collections=[end_points_collection]):
with slim.arg_scope([slim.batch_norm],
is_training=is_training,
decay=0.96,
updates_collections=None,
activation_fn=tf.nn.relu):
if act_max[0]>0:
fingerprint_4d = tf.fake_quant_with_min_max_vars(fingerprint_4d,
min=-act_max[0], max=act_max[0]-(act_max[0]/128.0),
num_bits=8, name='quant_input')
for layer_no in range(0,num_layers):
if layer_no==0:
net = slim.convolution2d(fingerprint_4d, conv_feat[layer_no],\
[conv_kt[layer_no], conv_kf[layer_no]], stride=[conv_st[layer_no],
conv_sf[layer_no]], padding='SAME', scope='conv_1', reuse=tf.AUTO_REUSE)
if act_max[1]>0:
net = tf.fake_quant_with_min_max_vars(net, min=-act_max[1],
max=act_max[1]-(act_max[1]/128.0), num_bits=8, name='quant_conv1')
net = tf.nn.relu(net)
#net = slim.batch_norm(net, scope='conv_1/batch_norm')
else:
net = _depthwise_separable_conv(net, conv_feat[layer_no], \
kernel_size = [conv_kt[layer_no],conv_kf[layer_no]], \
stride = [conv_st[layer_no],conv_sf[layer_no]],
sc='conv_ds_'+str(layer_no),
layer_no = layer_no,
act_max = act_max)
t_dim = math.ceil(t_dim/float(conv_st[layer_no]))
f_dim = math.ceil(f_dim/float(conv_sf[layer_no]))
net = slim.avg_pool2d(net, [t_dim, f_dim], scope='avg_pool')
if act_max[2*num_layers]>0:
net = tf.fake_quant_with_min_max_vars(net, min=-act_max[2*num_layers],
max=act_max[2*num_layers]-(act_max[2*num_layers]/128.0),
num_bits=8, name='quant_pool')
net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
logits = slim.fully_connected(net, label_count, activation_fn=None,
scope='fc1', reuse=tf.AUTO_REUSE)
if act_max[2*num_layers+1]>0:
logits = tf.fake_quant_with_min_max_vars(logits, min=-act_max[2*num_layers+1],
max=act_max[2*num_layers+1]-(act_max[2*num_layers+1]/128.0),
num_bits=8, name='quant_fc')
if is_training:
return logits, dropout_prob
else:
return logits