diff --git a/README.md b/README.md index c46f257..eaf402e 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,7 @@ pip install -e . ## Getting Started Kronfluence currently supports influence computations on `nn.Linear` and `nn.Conv2d` modules. -It also supports influence computations with several Hessian approximation techniques: `identity`, `diagonal`, `KFAC`, and `EKFAC`. +It also supports several other Hessian approximation techniques: `identity`, `diagonal`, `KFAC`, and `EKFAC`. The implementation is compatible with [Distributed Data Parallel (DDP)](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html), [Fully Sharded Data Parallel (FSDP)](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). See [DOCUMENTATION.md](https://github.com/pomonam/kronfluence/blob/main/DOCUMENTATION.md) for detailed description how to configure. @@ -115,9 +115,15 @@ analyzer.compute_pairwise_scores( scores = analyzer.load_pairwise_scores(scores_name="pairwise_scoeres") ``` -## Examples +## More Examples -(Placeholder for examples) +The [examples](https://github.com/pomonam/kronfluence/tree/main/examples) folder contains several examples on how to use Kronfluence. + +1. MLP & UCI regression datasets +2. ResNet-9 & CIFAR-10 dataset +3. ResNet-50 & ImageNet dataset (with DDP). +4. BERT & GLUE dataset +5. GPT-2 & WikiText-2 dataset ## Contributing