forked from YotamNitzan/ID-disentanglement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
445 lines (329 loc) · 18.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import logging
import numpy as np
import tensorflow as tf
from writer import Writer
from utils import general_utils as utils
def id_loss_func(y_gt, y_pred):
return tf.reduce_mean(tf.keras.losses.MAE(y_gt, y_pred))
class Trainer(object):
def __init__(self, args, model, data_loader):
self.args = args
self.logger = logging.getLogger(__class__.__name__)
self.model = model
self.data_loader = data_loader
# lrs & optimizers
lr = 5e-5 if self.args.resolution == 256 else 1e-5
self.g_optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
self.g_gan_optimizer = tf.keras.optimizers.Adam(learning_rate=0.1 * lr)
self.w_d_optimizer = tf.keras.optimizers.Adam(learning_rate=0.4 * lr)
self.im_d_optimizer = tf.keras.optimizers.Adam(learning_rate=0.4 * lr)
# Losses
self.gan_loss_func = tf.keras.losses.BinaryCrossentropy(from_logits=True)
self.pixel_loss_func = tf.keras.losses.MeanAbsoluteError(tf.keras.losses.Reduction.SUM)
self.id_loss_func = id_loss_func
if args.pixel_mask_type == 'gaussian':
sigma = int(80 * (self.args.resolution / 256))
self.pixel_mask = utils.inverse_gaussian_image(self.args.resolution, sigma)
else:
self.pixel_mask = tf.ones([self.args.resolution, self.args.resolution])
self.pixel_mask = self.pixel_mask / tf.reduce_sum(self.pixel_mask)
self.pixel_mask = tf.broadcast_to(self.pixel_mask, [self.args.batch_size, *self.pixel_mask.shape])
self.num_epoch = 0
self.is_cross_epoch = False
# Lambdas
if args.unified:
self.lambda_gan = 0.5
else:
self.lambda_gan = 1
self.lambda_pixel = 0.02
self.lambda_id = 1
self.lambda_attr_id = 1
self.lambda_landmarks = 0.001
self.r1_gamma = 10
# Test
self.test_not_imporved = 0
self.max_id_preserve = 0
self.min_lnd_dist = np.inf
def train(self):
while self.num_epoch <= self.args.num_epochs:
self.logger.info('---------------------------------------')
self.logger.info(f'Start training epoch: {self.num_epoch}')
if self.args.cross_frequency and (self.num_epoch % self.args.cross_frequency == 0):
self.is_cross_epoch = True
self.logger.info('This epoch is cross-face')
else:
self.is_cross_epoch = False
self.logger.info('This epoch is same-face')
try:
if self.num_epoch % self.args.test_frequency == 0:
self.test()
self.train_epoch()
except Exception as e:
self.logger.exception(e)
raise
if self.test_not_imporved > self.args.not_improved_exit:
self.logger.info(f'Test has not improved for {self.args.not_improved_exit} epochs. Exiting...')
break
self.num_epoch += 1
def train_epoch(self):
id_loss = 0
landmarks_loss = 0
g_w_gan_loss = 0
pixel_loss = 0
w_d_loss = 0
w_loss = 0
self.logger.info(f'train in epoch: {self.num_epoch}')
self.model.train()
use_w_d = self.args.W_D_loss
# if use_w_d and use_im_d and not self.args.unified:
if not self.args.unified:
if self.num_epoch % 2 == 0:
# This epoch is not using image_D
use_im_d = False
# self.logger.info(f'Not using Image D in epoch: {self.num_epoch}')
if self.num_epoch % 2 != 0:
# This epoch is not using W_D
use_w_d = False
# self.logger.info(f'Not using W_d in epoch: {self.num_epoch}')
attr_img, id_img, real_w, real_img, matching_ws = self.data_loader.get_batch(is_cross=self.is_cross_epoch)
# Forward that does not require grads
id_embedding = self.model.G.id_encoder(id_img)
src_landmarks = self.model.G.landmarks(attr_img)
attr_input = attr_img
with tf.GradientTape(persistent=True) as g_tape:
attr_out = self.model.G.attr_encoder(attr_input)
attr_embedding = attr_out
self.logger.info(f'attr embedding stats- mean: {tf.reduce_mean(tf.abs(attr_embedding)):.5f},'
f' variance: {tf.math.reduce_variance(attr_embedding):.5f}')
z_tag = tf.concat([id_embedding, attr_embedding], -1)
w = self.model.G.latent_spaces_mapping(z_tag)
fake_w = w[:, 0, :]
self.logger.info(
f'w stats- mean: {tf.reduce_mean(tf.abs(fake_w)):.5f}, variance: {tf.math.reduce_variance(fake_w):.5f}')
pred = self.model.G.stylegan_s(w)
# Move to roughly [0,1]
pred = (pred + 1) / 2
if use_w_d:
with tf.GradientTape() as w_d_tape:
fake_w_logit = self.model.W_D(fake_w)
g_w_gan_loss = self.generator_gan_loss(fake_w_logit)
self.logger.info(f'g W loss is {g_w_gan_loss:.3f}')
self.logger.info(f'fake W logit: {tf.squeeze(fake_w_logit)}')
with g_tape.stop_recording():
real_w_logit = self.model.W_D(real_w)
w_d_loss = self.discriminator_loss(fake_w_logit, real_w_logit)
w_d_total_loss = w_d_loss
if self.args.gp:
w_d_gp = self.R1_gp(self.model.W_D, real_w)
w_d_total_loss += w_d_gp
self.logger.info(f'w_d_gp : {w_d_gp}')
self.logger.info(f'W_D loss is {w_d_loss:.3f}')
self.logger.info(f'real W logit: {tf.squeeze(real_w_logit)}')
if self.args.id_loss:
pred_id_embedding = self.model.G.id_encoder(pred)
id_loss = self.lambda_id * id_loss_func(pred_id_embedding, tf.stop_gradient(id_embedding))
self.logger.info(f'id loss is {id_loss:.3f}')
if self.args.landmarks_loss:
try:
dst_landmarks = self.model.G.landmarks(pred)
except Exception as e:
self.logger.warning(f'Failed finding landmarks on prediction. Dont use landmarks loss. Error:{e}')
dst_landmarks = None
if dst_landmarks is None or src_landmarks is None:
landmarks_loss = 0
else:
landmarks_loss = self.lambda_landmarks * \
tf.reduce_mean(tf.keras.losses.MSE(src_landmarks, dst_landmarks))
self.logger.info(f'landmarks loss is: {landmarks_loss:.3f}')
# if landmarks_loss > 5:
# landmarks_loss = 0
# id_loss = 0
if not self.is_cross_epoch and self.args.pixel_loss:
l1_loss = self.pixel_loss_func(attr_img, pred, sample_weight=self.pixel_mask)
self.logger.info(f'L1 pixel loss is {l1_loss:.3f}')
if self.args.pixel_loss_type == 'mix':
mssim = tf.reduce_mean(1 - tf.image.ssim_multiscale(attr_img, pred, 1.0))
self.logger.info(f'mssim loss is {l1_loss:.3f}')
pixel_loss = self.lambda_pixel * (0.84 * mssim + 0.16 * l1_loss)
else:
pixel_loss = self.lambda_pixel * l1_loss
self.logger.info(f'pixel loss is {pixel_loss:.3f}')
g_gan_loss = g_w_gan_loss
total_g_not_gan_loss = id_loss \
+ landmarks_loss \
+ pixel_loss \
+ w_loss
self.logger.info(f'total G (not gan) loss is {total_g_not_gan_loss:.3f}')
self.logger.info(f'G gan loss is {g_gan_loss:.3f}')
Writer.add_scalar('loss/landmarks_loss', landmarks_loss, step=self.num_epoch)
Writer.add_scalar('loss/total_g_not_gan_loss', total_g_not_gan_loss, step=self.num_epoch)
Writer.add_scalar('loss/id_loss', id_loss, step=self.num_epoch)
if use_w_d:
Writer.add_scalar('loss/g_w_gan_loss', g_w_gan_loss, step=self.num_epoch)
Writer.add_scalar('loss/W_D_loss', w_d_loss, step=self.num_epoch)
if self.args.gp:
Writer.add_scalar('loss/w_d_gp', w_d_gp, step=self.num_epoch)
if not self.is_cross_epoch:
Writer.add_scalar('loss/pixel_loss', pixel_loss, step=self.num_epoch)
Writer.add_scalar('loss/w_loss', w_loss, step=self.num_epoch)
if self.args.debug or \
(self.num_epoch < 1e3 and self.num_epoch % 1e2 == 0) or \
(self.num_epoch < 1e4 and self.num_epoch % 1e3 == 0) or \
(self.num_epoch % 1e4 == 0):
utils.save_image(pred[0], self.args.images_results.joinpath(f'{self.num_epoch}_prediction_step.png'))
utils.save_image(id_img[0], self.args.images_results.joinpath(f'{self.num_epoch}_id_step.png'))
utils.save_image(attr_img[0], self.args.images_results.joinpath(f'{self.num_epoch}_attr_step.png'))
Writer.add_image('input/id image', tf.expand_dims(id_img[0], 0), step=self.num_epoch)
Writer.add_image('Prediction', tf.expand_dims(pred[0], 0), step=self.num_epoch)
if total_g_not_gan_loss != 0:
g_grads = g_tape.gradient(total_g_not_gan_loss, self.model.G.trainable_variables)
g_grads_global_norm = tf.linalg.global_norm(g_grads)
self.logger.info(f'global norm G not gan grad: {g_grads_global_norm}')
self.g_optimizer.apply_gradients(zip(g_grads, self.model.G.trainable_variables))
if use_w_d:
g_gan_grads = g_tape.gradient(g_gan_loss, self.model.G.trainable_variables)
g_gan_grad_global_norm = tf.linalg.global_norm(g_gan_grads)
self.logger.info(f'global norm G gan grad: {g_gan_grad_global_norm}')
self.g_gan_optimizer.apply_gradients(zip(g_gan_grads, self.model.G.trainable_variables))
w_d_grads = w_d_tape.gradient(w_d_total_loss, self.model.W_D.trainable_variables)
self.logger.info(f'global W_D gan grad: {tf.linalg.global_norm(w_d_grads)}')
self.w_d_optimizer.apply_gradients(zip(w_d_grads, self.model.W_D.trainable_variables))
del g_tape
# Common
# Test
def test(self):
self.logger.info(f'Testing in epoch: {self.num_epoch}')
self.model.test()
similarities = {'id_to_pred': [], 'id_to_attr': [], 'attr_to_pred': []}
fake_reconstruction = {'MSE': [], 'PSNR': [], 'ID': []}
real_reconstruction = {'MSE': [], 'PSNR': [], 'ID': []}
if self.args.test_with_arcface:
test_similarities = {'id_to_pred': [], 'id_to_attr': [], 'attr_to_pred': []}
lnd_dist = []
for i in range(self.args.test_size):
attr_img, id_img = self.data_loader.get_batch(is_train=False, is_cross=True)
pred, id_embedding, w, attr_embedding, src_lnds = self.model.G(id_img, attr_img)
image = tf.clip_by_value(pred, 0, 1)
pred_id = self.model.G.id_encoder(image)
attr_id = self.model.G.id_encoder(attr_img)
similarities['id_to_pred'].extend(tf.keras.losses.cosine_similarity(id_embedding, pred_id).numpy())
similarities['id_to_attr'].extend(tf.keras.losses.cosine_similarity(id_embedding, attr_id).numpy())
similarities['attr_to_pred'].extend(tf.keras.losses.cosine_similarity(attr_id, pred_id).numpy())
if self.args.test_with_arcface:
try:
arc_id_embedding = self.model.G.test_id_encoder(id_img)
arc_pred_id = self.model.G.test_id_encoder(image)
arc_attr_id = self.model.G.test_id_encoder(attr_img)
test_similarities['id_to_attr'].extend(
tf.keras.losses.cosine_similarity(arc_id_embedding, arc_attr_id).numpy())
test_similarities['id_to_pred'].extend(
tf.keras.losses.cosine_similarity(arc_id_embedding, arc_pred_id).numpy())
test_similarities['attr_to_pred'].extend(
tf.keras.losses.cosine_similarity(arc_attr_id, arc_pred_id).numpy())
except Exception as e:
self.logger.warning(f'Not calculating test similarities for iteration: {i} because: {e}')
# Landmarks
dst_lnds = self.model.G.landmarks(image)
lnd_dist.extend(tf.reduce_mean(tf.keras.losses.MSE(src_lnds, dst_lnds), axis=-1).numpy())
# Fake Reconstruction
self.test_reconstruction(id_img, fake_reconstruction, display=(i==0), display_name='id_img')
if self.args.test_real_attr:
# Real Reconstruction
self.test_reconstruction(attr_img, real_reconstruction, display=(i==0), display_name='attr_img')
if i == 0:
utils.save_image(image[0], self.args.images_results.joinpath(f'test_prediction_{self.num_epoch}.png'))
utils.save_image(id_img[0], self.args.images_results.joinpath(f'test_id_{self.num_epoch}.png'))
utils.save_image(attr_img[0],
self.args.images_results.joinpath(f'test_attr_{self.num_epoch}.png'))
Writer.add_image('test/prediction', image, step=self.num_epoch)
Writer.add_image('test input/id image', id_img, step=self.num_epoch)
Writer.add_image('test input/attr image', attr_img, step=self.num_epoch)
for j in range(np.minimum(3, src_lnds.shape[0])):
src_xy = src_lnds[j] # GT
dst_xy = dst_lnds[j] # pred
attr_marked = utils.mark_landmarks(attr_img[j], src_xy, color=(0, 0, 0))
pred_marked = utils.mark_landmarks(pred[j], src_xy, color=(0, 0, 0))
pred_marked = utils.mark_landmarks(pred_marked, dst_xy, color=(255, 112, 112))
Writer.add_image(f'landmarks/overlay-{j}', pred_marked, step=self.num_epoch)
Writer.add_image(f'landmarks/src-{j}', attr_marked, step=self.num_epoch)
# Similarity
self.logger.info('Similarities:')
for k, v in similarities.items():
self.logger.info(f'{k}: MEAN: {np.mean(v)}, STD: {np.std(v)}')
mean_lnd_dist = np.mean(lnd_dist)
self.logger.info(f'Mean landmarks L2: {mean_lnd_dist}')
id_to_pred = np.mean(similarities['id_to_pred'])
attr_to_pred = np.mean(similarities['attr_to_pred'])
mean_disen = attr_to_pred - id_to_pred
Writer.add_scalar('similarity/score', mean_disen, step=self.num_epoch)
Writer.add_scalar('similarity/id_to_pred', id_to_pred, step=self.num_epoch)
Writer.add_scalar('similarity/attr_to_pred', attr_to_pred, step=self.num_epoch)
if self.args.test_with_arcface:
arc_id_to_pred = np.mean(test_similarities['id_to_pred'])
arc_attr_to_pred = np.mean(test_similarities['attr_to_pred'])
arc_mean_disen = arc_attr_to_pred - arc_id_to_pred
Writer.add_scalar('arc_similarity/score', arc_mean_disen, step=self.num_epoch)
Writer.add_scalar('arc_similarity/id_to_pred', arc_id_to_pred, step=self.num_epoch)
Writer.add_scalar('arc_similarity/attr_to_pred', arc_attr_to_pred, step=self.num_epoch)
self.logger.info(f'Mean disentanglement score is {mean_disen}')
Writer.add_scalar('landmarks/L2', np.mean(lnd_dist), step=self.num_epoch)
# Reconstruction
if self.args.test_real_attr:
Writer.add_scalar('reconstruction/real_MSE', np.mean(real_reconstruction['MSE']), step=self.num_epoch)
Writer.add_scalar('reconstruction/real_PSNR', np.mean(real_reconstruction['PSNR']), step=self.num_epoch)
Writer.add_scalar('reconstruction/real_ID', np.mean(real_reconstruction['ID']), step=self.num_epoch)
Writer.add_scalar('reconstruction/fake_MSE', np.mean(fake_reconstruction['MSE']), step=self.num_epoch)
Writer.add_scalar('reconstruction/fake_PSNR', np.mean(fake_reconstruction['PSNR']), step=self.num_epoch)
Writer.add_scalar('reconstruction/fake_ID', np.mean(fake_reconstruction['ID']), step=self.num_epoch)
if mean_lnd_dist < self.min_lnd_dist:
self.logger.info('Minimum landmarks dist achieved. saving checkpoint')
self.test_not_imporved = 0
self.min_lnd_dist = mean_lnd_dist
self.model.my_save(f'_best_landmarks_epoch_{self.num_epoch}')
if np.abs(id_to_pred) > self.max_id_preserve:
self.logger.info(f'Max ID preservation achieved! saving checkpoint')
self.test_not_imporved = 0
self.max_id_preserve = np.abs(id_to_pred)
self.model.my_save(f'_best_id_epoch_{self.num_epoch}')
else:
self.test_not_imporved += 1
def test_reconstruction(self, img, errors_dict, display=False, display_name=None):
pred, id_embedding, w, attr_embedding, src_lnds = self.model.G(img, img)
recon_image = tf.clip_by_value(pred, 0, 1)
recon_pred_id = self.model.G.id_encoder(recon_image)
mse = tf.reduce_mean((img - recon_image) ** 2, axis=[1, 2, 3]).numpy()
psnr = tf.image.psnr(img, recon_image, 1).numpy()
errors_dict['MSE'].extend(mse)
errors_dict['PSNR'].extend(psnr)
errors_dict['ID'].extend(tf.keras.losses.cosine_similarity(id_embedding, recon_pred_id).numpy())
if display:
Writer.add_image(f'reconstruction/{display_name}', pred, step=self.num_epoch)
# Helpers
def generator_gan_loss(self, fake_logit):
"""
G logistic non saturating loss, to be minimized
"""
g_gan_loss = self.gan_loss_func(tf.ones_like(fake_logit), fake_logit)
return self.lambda_gan * g_gan_loss
def discriminator_loss(self, fake_logit, real_logit):
"""
D logistic loss, to be minimized
verified as identical to StyleGAN's loss.D_logistic
"""
fake_gt = tf.zeros_like(fake_logit)
real_gt = tf.ones_like(real_logit)
d_fake_loss = self.gan_loss_func(fake_gt, fake_logit)
d_real_loss = self.gan_loss_func(real_gt, real_logit)
d_loss = d_real_loss + d_fake_loss
return self.lambda_gan * d_loss
def R1_gp(self, D, x):
with tf.GradientTape() as t:
t.watch(x)
pred = D(x)
pred_sum = tf.reduce_sum(pred)
grad = t.gradient(pred_sum, x)
# Reshape as a vector
norm = tf.norm(tf.reshape(grad, [tf.shape(grad)[0], -1]), axis=1)
gp = tf.reduce_mean(norm ** 2)
gp = 0.5 * self.r1_gamma * gp
return gp