-
Notifications
You must be signed in to change notification settings - Fork 177
/
morphsnakes.py
555 lines (442 loc) · 19.2 KB
/
morphsnakes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# -*- coding: utf-8 -*-
"""
====================
Morphological Snakes
====================
*Morphological Snakes* [1]_ are a family of methods for image segmentation.
Their behavior is similar to that of active contours (for example, *Geodesic
Active Contours* [2]_ or *Active Contours without Edges* [3]_). However,
*Morphological Snakes* use morphological operators (such as dilation or
erosion) over a binary array instead of solving PDEs over a floating point
array, which is the standard approach for active contours. This makes
*Morphological Snakes* faster and numerically more stable than their
traditional counterpart.
There are two *Morphological Snakes* methods available in this implementation:
*Morphological Geodesic Active Contours* (**MorphGAC**, implemented in the
function ``morphological_geodesic_active_contour``) and *Morphological Active
Contours without Edges* (**MorphACWE**, implemented in the function
``morphological_chan_vese``).
**MorphGAC** is suitable for images with visible contours, even when these
contours might be noisy, cluttered, or partially unclear. It requires, however,
that the image is preprocessed to highlight the contours. This can be done
using the function ``inverse_gaussian_gradient``, although the user might want
to define their own version. The quality of the **MorphGAC** segmentation
depends greatly on this preprocessing step.
On the contrary, **MorphACWE** works well when the pixel values of the inside
and the outside regions of the object to segment have different averages.
Unlike **MorphGAC**, **MorphACWE** does not require that the contours of the
object are well defined, and it works over the original image without any
preceding processing. This makes **MorphACWE** easier to use and tune than
**MorphGAC**.
References
----------
.. [1] A Morphological Approach to Curvature-based Evolution of Curves and
Surfaces, Pablo Márquez-Neila, Luis Baumela and Luis Álvarez. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2014, DOI 10.1109/TPAMI.2013.106
.. [2] Geodesic Active Contours, Vicent Caselles, Ron Kimmel and Guillermo
Sapiro. In International Journal of Computer Vision (IJCV), 1997,
DOI:10.1023/A:1007979827043
.. [3] Active Contours without Edges, Tony Chan and Luminita Vese. In IEEE
Transactions on Image Processing, 2001, DOI:10.1109/83.902291
"""
__author__ = "P. Márquez Neila <[email protected]>"
from itertools import cycle
import numpy as np
from scipy import ndimage as ndi
__all__ = [
'morphological_chan_vese',
'morphological_geodesic_active_contour',
'inverse_gaussian_gradient',
'circle_level_set',
'checkerboard_level_set'
]
__version__ = (2, 1, 1)
__version_str__ = ".".join(map(str, __version__))
class _fcycle(object):
def __init__(self, iterable):
"""Call functions from the iterable each time it is called."""
self.funcs = cycle(iterable)
def __call__(self, *args, **kwargs):
f = next(self.funcs)
return f(*args, **kwargs)
# SI and IS operators for 2D and 3D.
_P2 = [np.eye(3),
np.array([[0, 1, 0]] * 3),
np.flipud(np.eye(3)),
np.rot90([[0, 1, 0]] * 3)]
_P3 = [np.zeros((3, 3, 3)) for i in range(9)]
_P3[0][:, :, 1] = 1
_P3[1][:, 1, :] = 1
_P3[2][1, :, :] = 1
_P3[3][:, [0, 1, 2], [0, 1, 2]] = 1
_P3[4][:, [0, 1, 2], [2, 1, 0]] = 1
_P3[5][[0, 1, 2], :, [0, 1, 2]] = 1
_P3[6][[0, 1, 2], :, [2, 1, 0]] = 1
_P3[7][[0, 1, 2], [0, 1, 2], :] = 1
_P3[8][[0, 1, 2], [2, 1, 0], :] = 1
def sup_inf(u):
"""SI operator."""
if np.ndim(u) == 2:
P = _P2
elif np.ndim(u) == 3:
P = _P3
else:
raise ValueError("u has an invalid number of dimensions "
"(should be 2 or 3)")
erosions = []
for P_i in P:
erosions.append(ndi.binary_erosion(u, P_i))
return np.array(erosions, dtype=np.int8).max(0)
def inf_sup(u):
"""IS operator."""
if np.ndim(u) == 2:
P = _P2
elif np.ndim(u) == 3:
P = _P3
else:
raise ValueError("u has an invalid number of dimensions "
"(should be 2 or 3)")
dilations = []
for P_i in P:
dilations.append(ndi.binary_dilation(u, P_i))
return np.array(dilations, dtype=np.int8).min(0)
_curvop = _fcycle([lambda u: sup_inf(inf_sup(u)), # SIoIS
lambda u: inf_sup(sup_inf(u))]) # ISoSI
def _check_input(image, init_level_set):
"""Check that shapes of `image` and `init_level_set` match."""
if image.ndim not in [2, 3]:
raise ValueError("`image` must be a 2 or 3-dimensional array.")
if len(image.shape) != len(init_level_set.shape):
raise ValueError("The dimensions of the initial level set do not "
"match the dimensions of the image.")
def _init_level_set(init_level_set, image_shape):
"""Auxiliary function for initializing level sets with a string.
If `init_level_set` is not a string, it is returned as is.
"""
if isinstance(init_level_set, str):
if init_level_set == 'checkerboard':
res = checkerboard_level_set(image_shape)
elif init_level_set == 'circle':
res = circle_level_set(image_shape)
elif init_level_set == 'ellipsoid':
res = ellipsoid_level_set(image_shape)
else:
raise ValueError("`init_level_set` not in "
"['checkerboard', 'circle', 'ellipsoid']")
else:
res = init_level_set
return res
def circle_level_set(image_shape, center=None, radius=None):
"""Create a circle level set with binary values.
Parameters
----------
image_shape : tuple of positive integers
Shape of the image
center : tuple of positive integers, optional
Coordinates of the center of the circle given in (row, column). If not
given, it defaults to the center of the image.
radius : float, optional
Radius of the circle. If not given, it is set to the 75% of the
smallest image dimension.
Returns
-------
out : array with shape `image_shape`
Binary level set of the circle with the given `radius` and `center`.
See also
--------
ellipsoid_level_set
checkerboard_level_set
"""
if center is None:
center = tuple(i // 2 for i in image_shape)
if radius is None:
radius = min(image_shape) * 3.0 / 8.0
grid = np.mgrid[[slice(i) for i in image_shape]]
grid = (grid.T - center).T
phi = radius - np.sqrt(np.sum((grid)**2, 0))
res = np.int8(phi > 0)
return res
def ellipsoid_level_set(image_shape, center=None, semi_axis=None):
"""Create a ellipsoid level set with binary values.
Parameters
----------
image_shape : tuple of positive integers
Shape of the image
center : tuple of integers, optional
Coordinates of the center of the ellipsoid.
If not given, it defaults to the center of the image.
semi_axis : tuple of floats, optional
Lengths of the semi-axis of the ellispoid.
If not given, it defaults to the half of the image dimensions.
Returns
-------
out : array with shape `image_shape`
Binary level set of the ellipsoid with the given `center`
and `semi_axis`.
See also
--------
circle_level_set
"""
if center is None:
center = tuple(i // 2 for i in image_shape)
if semi_axis is None:
semi_axis = tuple(i / 2 for i in image_shape)
if len(center) != len(image_shape):
raise ValueError("`center` and `image_shape` must have the same length.")
if len(semi_axis) != len(image_shape):
raise ValueError("`semi_axis` and `image_shape` must have the same length.")
if len(image_shape) == 2:
xc, yc = center
rx, ry = semi_axis
phi = 1 - np.fromfunction(
lambda x, y: ((x - xc) / rx) ** 2 +
((y - yc) / ry) ** 2,
image_shape, dtype=float)
elif len(image_shape) == 3:
xc, yc, zc = center
rx, ry, rz = semi_axis
phi = 1 - np.fromfunction(
lambda x, y, z: ((x - xc) / rx) ** 2 +
((y - yc) / ry) ** 2 +
((z - zc) / rz) ** 2,
image_shape, dtype=float)
else:
raise ValueError("`image_shape` must be a 2- or 3-tuple.")
res = np.int8(phi > 0)
return res
def checkerboard_level_set(image_shape, square_size=5):
"""Create a checkerboard level set with binary values.
Parameters
----------
image_shape : tuple of positive integers
Shape of the image.
square_size : int, optional
Size of the squares of the checkerboard. It defaults to 5.
Returns
-------
out : array with shape `image_shape`
Binary level set of the checkerboard.
See also
--------
circle_level_set
"""
grid = np.ogrid[[slice(i) for i in image_shape]]
grid = [(grid_i // square_size) & 1 for grid_i in grid]
checkerboard = np.bitwise_xor.reduce(grid, axis=0)
res = np.int8(checkerboard)
return res
def inverse_gaussian_gradient(image, alpha=100.0, sigma=5.0):
"""Inverse of gradient magnitude.
Compute the magnitude of the gradients in the image and then inverts the
result in the range [0, 1]. Flat areas are assigned values close to 1,
while areas close to borders are assigned values close to 0.
This function or a similar one defined by the user should be applied over
the image as a preprocessing step before calling
`morphological_geodesic_active_contour`.
Parameters
----------
image : (M, N) or (L, M, N) array
Grayscale image or volume.
alpha : float, optional
Controls the steepness of the inversion. A larger value will make the
transition between the flat areas and border areas steeper in the
resulting array.
sigma : float, optional
Standard deviation of the Gaussian filter applied over the image.
Returns
-------
gimage : (M, N) or (L, M, N) array
Preprocessed image (or volume) suitable for
`morphological_geodesic_active_contour`.
"""
gradnorm = ndi.gaussian_gradient_magnitude(image, sigma, mode='nearest')
return 1.0 / np.sqrt(1.0 + alpha * gradnorm)
def morphological_chan_vese(image, iterations, init_level_set='checkerboard',
smoothing=1, lambda1=1, lambda2=1,
iter_callback=lambda x: None):
"""Morphological Active Contours without Edges (MorphACWE)
Active contours without edges implemented with morphological operators. It
can be used to segment objects in images and volumes without well defined
borders. It is required that the inside of the object looks different on
average than the outside (i.e., the inner area of the object should be
darker or lighter than the outer area on average).
Parameters
----------
image : (M, N) or (L, M, N) array
Grayscale image or volume to be segmented.
iterations : uint
Number of iterations to run
init_level_set : str, (M, N) array, or (L, M, N) array
Initial level set. If an array is given, it will be binarized and used
as the initial level set. If a string is given, it defines the method
to generate a reasonable initial level set with the shape of the
`image`. Accepted values are 'checkerboard' and 'circle'. See the
documentation of `checkerboard_level_set` and `circle_level_set`
respectively for details about how these level sets are created.
smoothing : uint, optional
Number of times the smoothing operator is applied per iteration.
Reasonable values are around 1-4. Larger values lead to smoother
segmentations.
lambda1 : float, optional
Weight parameter for the outer region. If `lambda1` is larger than
`lambda2`, the outer region will contain a larger range of values than
the inner region.
lambda2 : float, optional
Weight parameter for the inner region. If `lambda2` is larger than
`lambda1`, the inner region will contain a larger range of values than
the outer region.
iter_callback : function, optional
If given, this function is called once per iteration with the current
level set as the only argument. This is useful for debugging or for
plotting intermediate results during the evolution.
Returns
-------
out : (M, N) or (L, M, N) array
Final segmentation (i.e., the final level set)
See also
--------
circle_level_set, checkerboard_level_set
Notes
-----
This is a version of the Chan-Vese algorithm that uses morphological
operators instead of solving a partial differential equation (PDE) for the
evolution of the contour. The set of morphological operators used in this
algorithm are proved to be infinitesimally equivalent to the Chan-Vese PDE
(see [1]_). However, morphological operators are do not suffer from the
numerical stability issues typically found in PDEs (it is not necessary to
find the right time step for the evolution), and are computationally
faster.
The algorithm and its theoretical derivation are described in [1]_.
References
----------
.. [1] A Morphological Approach to Curvature-based Evolution of Curves and
Surfaces, Pablo Márquez-Neila, Luis Baumela, Luis Álvarez. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2014, DOI 10.1109/TPAMI.2013.106
"""
init_level_set = _init_level_set(init_level_set, image.shape)
_check_input(image, init_level_set)
u = np.int8(init_level_set > 0)
iter_callback(u)
for _ in range(iterations):
# inside = u > 0
# outside = u <= 0
c0 = (image * (1 - u)).sum() / float((1 - u).sum() + 1e-8)
c1 = (image * u).sum() / float(u.sum() + 1e-8)
# Image attachment
du = np.gradient(u)
abs_du = np.abs(du).sum(0)
aux = abs_du * (lambda1 * (image - c1)**2 - lambda2 * (image - c0)**2)
u[aux < 0] = 1
u[aux > 0] = 0
# Smoothing
for _ in range(smoothing):
u = _curvop(u)
iter_callback(u)
return u
def morphological_geodesic_active_contour(gimage, iterations,
init_level_set='circle', smoothing=1,
threshold='auto', balloon=0,
iter_callback=lambda x: None):
"""Morphological Geodesic Active Contours (MorphGAC).
Geodesic active contours implemented with morphological operators. It can
be used to segment objects with visible but noisy, cluttered, broken
borders.
Parameters
----------
gimage : (M, N) or (L, M, N) array
Preprocessed image or volume to be segmented. This is very rarely the
original image. Instead, this is usually a preprocessed version of the
original image that enhances and highlights the borders (or other
structures) of the object to segment.
`morphological_geodesic_active_contour` will try to stop the contour
evolution in areas where `gimage` is small. See
`morphsnakes.inverse_gaussian_gradient` as an example function to
perform this preprocessing. Note that the quality of
`morphological_geodesic_active_contour` might greatly depend on this
preprocessing.
iterations : uint
Number of iterations to run.
init_level_set : str, (M, N) array, or (L, M, N) array
Initial level set. If an array is given, it will be binarized and used
as the initial level set. If a string is given, it defines the method
to generate a reasonable initial level set with the shape of the
`image`. Accepted values are 'checkerboard' and 'circle'. See the
documentation of `checkerboard_level_set` and `circle_level_set`
respectively for details about how these level sets are created.
smoothing : uint, optional
Number of times the smoothing operator is applied per iteration.
Reasonable values are around 1-4. Larger values lead to smoother
segmentations.
threshold : float, optional
Areas of the image with a value smaller than this threshold will be
considered borders. The evolution of the contour will stop in this
areas.
balloon : float, optional
Balloon force to guide the contour in non-informative areas of the
image, i.e., areas where the gradient of the image is too small to push
the contour towards a border. A negative value will shrink the contour,
while a positive value will expand the contour in these areas. Setting
this to zero will disable the balloon force.
iter_callback : function, optional
If given, this function is called once per iteration with the current
level set as the only argument. This is useful for debugging or for
plotting intermediate results during the evolution.
Returns
-------
out : (M, N) or (L, M, N) array
Final segmentation (i.e., the final level set)
See also
--------
inverse_gaussian_gradient, circle_level_set, checkerboard_level_set
Notes
-----
This is a version of the Geodesic Active Contours (GAC) algorithm that uses
morphological operators instead of solving partial differential equations
(PDEs) for the evolution of the contour. The set of morphological operators
used in this algorithm are proved to be infinitesimally equivalent to the
GAC PDEs (see [1]_). However, morphological operators are do not suffer
from the numerical stability issues typically found in PDEs (e.g., it is
not necessary to find the right time step for the evolution), and are
computationally faster.
The algorithm and its theoretical derivation are described in [1]_.
References
----------
.. [1] A Morphological Approach to Curvature-based Evolution of Curves and
Surfaces, Pablo Márquez-Neila, Luis Baumela, Luis Álvarez. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2014, DOI 10.1109/TPAMI.2013.106
"""
image = gimage
init_level_set = _init_level_set(init_level_set, image.shape)
_check_input(image, init_level_set)
if threshold == 'auto':
threshold = np.percentile(image, 40)
structure = np.ones((3,) * len(image.shape), dtype=np.int8)
dimage = np.gradient(image)
# threshold_mask = image > threshold
if balloon != 0:
threshold_mask_balloon = image > threshold / np.abs(balloon)
u = np.int8(init_level_set > 0)
iter_callback(u)
for _ in range(iterations):
# Balloon
if balloon > 0:
aux = ndi.binary_dilation(u, structure)
elif balloon < 0:
aux = ndi.binary_erosion(u, structure)
if balloon != 0:
u[threshold_mask_balloon] = aux[threshold_mask_balloon]
# Image attachment
aux = np.zeros_like(image)
du = np.gradient(u)
for el1, el2 in zip(dimage, du):
aux += el1 * el2
u[aux > 0] = 1
u[aux < 0] = 0
# Smoothing
for _ in range(smoothing):
u = _curvop(u)
iter_callback(u)
return u