-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdiffusion_inference.py
286 lines (250 loc) · 13.1 KB
/
diffusion_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import torch
import torch.nn as nn
import os
import logging
from torchvision.utils import save_image
import tqdm
from torch.utils.data import DataLoader
from itertools import islice
import random
import cv2
import sys
import numpy as np
from dataloader import Flow_Loader
from models.diffusion_model import UNet
from models.diffusion_network import DDIM, DDPM
from utils.set_condition import select_condition_strategy
from utils.flow_viz import flow_to_image
from utils.utils import same_seed, count_parameters, tensor2cv, AverageMeter, judge_and_remove_module_dict
import pyiqa
import time
import datetime
@torch.no_grad()
def valid(model, dataloader_val, sample_timesteps, device, valid_iters=None, title=None):
model.eval()
psnr_func = pyiqa.create_metric('psnr', device=device)
lpips_func = pyiqa.create_metric('lpips', device=device)
niqe_func = pyiqa.create_metric('niqe', device=device)
total_val_psnr = AverageMeter()
total_val_lpips = AverageMeter()
total_val_niqe = AverageMeter()
if valid_iters:
tq = tqdm.tqdm(islice(dataloader_val, valid_iters), total=valid_iters)
else:
tq = tqdm.tqdm(dataloader_val, total=len(dataloader_val))
tq.set_description(f'Validation')
start_time = time.time()
for idx, sample in enumerate(tq):
blur, sharp = sample['blur'].to(device), sample['sharp'].to(device)
flow = sample['flow'].to(device)
condition = torch.cat([sharp, flow], dim=1)
if args.model == "DDIM":
output = model.sample(condition=condition, sample_timesteps=sample_timesteps, device=device, tqdm_visible=False)
elif args.model == "DDPM":
output = model.sample(condition=condition, device=device, tqdm_visible=True)
output = output.clamp(-0.5, 0.5)
psnr = torch.mean(psnr_func(output.detach(), blur.detach())).item()
lpips = torch.mean(lpips_func(output.detach(), blur.detach())).item()
niqe = torch.mean(niqe_func(output.detach())).item()
total_val_psnr.update(psnr)
total_val_lpips.update(lpips)
total_val_niqe.update(niqe)
tq.set_postfix(LPIPS=total_val_lpips.avg, PSNR=total_val_psnr.avg, NIQE=total_val_niqe.avg)
end_time = time.time()
elapsed_time = end_time - start_time
time_obj = datetime.timedelta(seconds=elapsed_time)
time_str = str(time_obj).split(".")[0]
logging.info(f"-----------EVAL------------")
logging.info(f"Title : {title}")
logging.info(f"sample_timesteps : {sample_timesteps}")
logging.info(f"The program's running time is (h:m:s) : {time_str}")
logging.info(f"PSNR : {total_val_psnr.avg:.4f}, LPIPS : {total_val_lpips.avg:.4f}, NIQE : {total_val_niqe.avg:.4f}")
def val_save_image(model, dir_path, dataset, sample_timesteps, val_num=3, val_idxs=None):
"""use dataset to val and save image"""
dir_path = os.path.join(dir_path, "images")
os.makedirs(dir_path, exist_ok=True)
with torch.no_grad():
model.eval()
if val_idxs is None:
val_idxs = random.sample(range(0, len(dataset)), val_num)
for i, idx in enumerate(val_idxs):
print(i)
sample = dataset[idx]
save_sharp_path = os.path.join(dir_path, 'sharp')
os.makedirs(save_sharp_path, exist_ok=True)
save_sharp_image_path = os.path.join(save_sharp_path, f'{idx:05d}.png')
save_image(sample['sharp'].squeeze(0).cpu() + 0.5, save_sharp_image_path)
save_blur_path = os.path.join(dir_path, 'blur')
os.makedirs(save_blur_path, exist_ok=True)
save_blur_image_path = os.path.join(save_blur_path, f'{idx:05d}.png')
save_image(sample['blur'].squeeze(0).cpu() + 0.5, save_blur_image_path)
sharp = sample['sharp'].unsqueeze(0).to(device)
flow = sample['flow'].unsqueeze(0).to(device)
condition = torch.cat([sharp, flow], dim=1)
if args.model == "DDIM":
output = model.sample(condition=condition, sample_timesteps=sample_timesteps, device=device, tqdm_visible=True)
elif args.model == "DDPM":
output = model.sample(condition=condition, device=device, tqdm_visible=True)
output = output.clamp(-0.5, 0.5)
save_dir_path = os.path.join(dir_path, f'output')
os.makedirs(save_dir_path, exist_ok=True)
save_img_path = os.path.join(save_dir_path, f'{idx:05d}.png')
output = tensor2cv(output + 0.5)
cv2.imwrite(save_img_path, output)
#---------flow--------------------
flow = flow.squeeze(0).cpu().numpy()
flow = flow.transpose((1,2,0))
flow_x = flow[:, :, 0] * flow[:, :, 2]
flow_y = flow[:, :, 1] * flow[:, :, 2]
optical_flow = np.stack((flow_x, flow_y), axis=-1)
flo = flow_to_image(optical_flow, norm=1)
flow_dir_path = os.path.join(dir_path, f'flow')
os.makedirs(flow_dir_path, exist_ok=True)
flow_img_path = os.path.join(flow_dir_path, f'{idx:05d}.png')
cv2.imwrite(flow_img_path, flo[:, :, [2,1,0]])
def generate_dataset(model, dir_path, dataset, sample_timesteps, strategySetting, generate_num=5, save_npy=False):
"""use dataset to generate different image"""
sharp_path = os.path.join(dir_path, "sharp")
blur_path = os.path.join(dir_path, "blur")
condition_path = os.path.join(dir_path, "condition")
os.makedirs(dir_path, exist_ok=True)
os.makedirs(sharp_path)
os.makedirs(blur_path)
os.makedirs(condition_path)
if 'TURN' not in strategySetting:
strategy = strategySetting[:]
else:
strategy_list = strategySetting[:]
strategy_list.remove('TURN')
if 'FIXED' in strategySetting:
strategy_list.remove("FIXED")
with torch.no_grad():
model.eval()
dataset_len = len(dataset)
tq = tqdm.tqdm(range(dataset_len))
tq.set_description(f'Generate images')
for idx in tq:
sample = dataset[idx]
sharp_idx_path = os.path.join(sharp_path, f"{idx:05d}")
os.makedirs(sharp_idx_path)
save_sharp_image_path = os.path.join(sharp_idx_path, f'sharp.png')
save_image(sample['sharp'].squeeze(0).cpu() + 0.5, save_sharp_image_path)
blur_idx_path = os.path.join(blur_path, f"{idx:05d}")
os.makedirs(blur_idx_path)
if save_npy:
condition_idx_path = os.path.join(condition_path, f"{idx:05d}")
os.makedirs(condition_idx_path)
change_base = 0
if 'FIXED' in strategySetting:
change_base = random.randint(0, 100)
for index in range(generate_num):
sharp = sample['sharp'].unsqueeze(0).to(device)
flow = sample['flow'].clone().unsqueeze(0).to(device)
choice_num = None
if 'FIXED' in strategySetting:
choice_num = index
if 'TURN' in strategySetting:
strategy = [strategy_list[(idx + index) % len(strategy_list)]]
new_flow = select_condition_strategy(flow, strategy=strategy, choice_num=choice_num, change_base=change_base)#, strategy
condition = torch.cat([sharp, new_flow], dim=1)
output = model.sample(condition=condition, sample_timesteps=sample_timesteps, device=device)
output = output.clamp(-0.5, 0.5) # [B, C, H, W]
save_img_path = os.path.join(blur_idx_path, f'{index:05d}.png')
output = tensor2cv(output + 0.5)
cv2.imwrite(save_img_path, output)
if save_npy:
condition_np = new_flow.squeeze(0).cpu().numpy()
save_npy_path = os.path.join(condition_idx_path, f'{index:05d}.npy')
np.save(save_npy_path, condition_np)
def generate_linear_schedule(T, beta_1, beta_T):
return torch.linspace(beta_1, beta_T, T).double()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--data_path", default='./dataset/GOPRO_Large', type=str)
parser.add_argument("--dir_path", default=None, type=str)
parser.add_argument("--model_path", default=None, type=str)
parser.add_argument("--flow_data_path",default="./dataset/GOPRO_flow",type=str)
parser.add_argument("--flow_norm",default=True,type=bool)
parser.add_argument("--model", default='DDIM', type=str)
parser.add_argument("--title", default='None', type=str)
parser.add_argument("--type", default='generate_dataset', type=str, choices=['generate_dataset', 'image'] + pyiqa.list_models())
parser.add_argument("--dataset", default='train', type=str, choices=['train', 'test'])
parser.add_argument("--val_num", default=5, type=int)
parser.add_argument("--strategy", default=[], type=str, choices=['O', 'M10', 'M20', 'M30', 'M40', 'M60', 'M80', 'ALLM', 'ALLO', 'RO', '30O', '60O', 'FIXED', 'TURN'], nargs='+')
parser.add_argument("--sample_timesteps", default=20, type=int)
parser.add_argument("--generate_num", default=5, type=int)
parser.add_argument("--valid_iters", default=None, type=int)
parser.add_argument("--crop_size", default=None, type=int)
parser.add_argument("--save_npy", default=False, type=bool)
parser.add_argument("--seed", default=2023, type=int)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device :", device)
same_seed(args.seed)
load_model_state = torch.load(args.model_path)
model_args = load_model_state['args']
if not os.path.isdir(args.dir_path):
os.makedirs(args.dir_path)
# type: list(number) -> Specify the indices of the images or videos to be generated.
# type: None -> Generate randomly based on the specified number, according to the value provided in args.val_num.
val_idxs = None
# dataset
if args.dataset == "train":
dataset = Flow_Loader(data_path=args.data_path,
flow_path=args.flow_data_path,
mode="train",
crop_size=args.crop_size,
flow_norm=args.flow_norm)
elif args.dataset == "test":
dataset = Flow_Loader(data_path=args.data_path,
flow_path=args.flow_data_path,
mode="test",
crop_size=args.crop_size,
flow_norm=args.flow_norm)
else:
raise ValueError("Invalid dataset type (only train and test)")
# search_str = [ "GOPR0384_11_04/blur/002828.png"]
# val_idxs = [i for i, item in enumerate(dataset.blur_list) if any(substr in item for substr in search_str)]
beta = generate_linear_schedule(
model_args.num_timesteps, model_args.beta_1, model_args.beta_T)
model_UNet = UNet(
channel_mults=model_args.channel_mults,
base_channels=model_args.base_channels,
time_dim=model_args.time_dim,
dropout=model_args.dropout
).to(device)
if args.model == "DDIM":
diffusionModel = DDIM(model_UNet, img_channels=9, betas=beta).to(device)
elif args.model == "DDPM":
diffusionModel = DDPM(model_UNet, img_channels=9, betas=beta).to(device)
else:
raise ValueError(f"model not supported {args.model}")
if 'model_state' in load_model_state.keys():
diffusionModel.load_state_dict(load_model_state["model_state"])
else:
diffusionModel.load_state_dict(load_model_state)
print("device:", device)
print(f'args: {args}')
#print(f'model: {diffusionModel}')
print(f'model parameters: {count_parameters(diffusionModel)}')
if args.type == 'generate_dataset':
print(f'strategy: {args.strategy}')
generate_dataset(diffusionModel, args.dir_path, dataset, sample_timesteps=args.sample_timesteps, generate_num=args.generate_num, strategySetting=args.strategy, save_npy=args.save_npy)
if args.type in pyiqa.list_models():
logging.basicConfig(
filename=os.path.join(args.dir_path, 'eval.log') , format='%(asctime)s | %(levelname)s : %(message)s', encoding='utf-8', level=logging.INFO)
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(asctime)s | %(levelname)s : %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=8,
drop_last=False)
valid(diffusionModel, dataloader, sample_timesteps=args.sample_timesteps, device=device, valid_iters=args.valid_iters, title=args.title)
elif args.type == "image":
val_save_image(diffusionModel, args.dir_path, dataset, sample_timesteps=args.sample_timesteps, val_num=args.val_num, val_idxs=val_idxs)