-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathchapter18.tex
1225 lines (1082 loc) · 36.3 KB
/
chapter18.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Tree queries}
\index{tree query}
This chapter discusses techniques for
processing queries on
subtrees and paths of a rooted tree.
For example, such queries are:
\begin{itemize}
\item what is the $k$th ancestor of a node?
\item what is the sum of values in the subtree of a node?
\item what is the sum of values on a path between two nodes?
\item what is the lowest common ancestor of two nodes?
\end{itemize}
\section{Finding ancestors}
\index{ancestor}
The $k$th \key{ancestor} of a node $x$ in a rooted tree
is the node that we will reach if we move $k$
levels up from $x$.
Let $\texttt{ancestor}(x,k)$ denote the $k$th ancestor of a node $x$
(or $0$ if there is no such an ancestor).
For example, in the following tree,
$\texttt{ancestor}(2,1)=1$ and $\texttt{ancestor}(8,2)=4$.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$2$};
\node[draw, circle] (3) at (-2,1) {$4$};
\node[draw, circle] (4) at (0,1) {$5$};
\node[draw, circle] (5) at (2,-1) {$6$};
\node[draw, circle] (6) at (-3,-1) {$3$};
\node[draw, circle] (7) at (-1,-1) {$7$};
\node[draw, circle] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,->,line width=2pt] (8) edge [bend left] (3);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend right] (1);
\end{tikzpicture}
\end{center}
An easy way to calculate any value of $\texttt{ancestor}(x,k)$
is to perform a sequence of $k$ moves in the tree.
However, the time complexity of this method
is $O(k)$, which may be slow, because a tree of $n$
nodes may have a chain of $n$ nodes.
Fortunately, using a technique similar to that
used in Chapter 16.3, any value of $\texttt{ancestor}(x,k)$
can be efficiently calculated in $O(\log k)$ time
after preprocessing.
The idea is to precalculate all values $\texttt{ancestor}(x,k)$
where $k \le n$ is a power of two.
For example, the values for the above tree
are as follows:
\begin{center}
\begin{tabular}{r|rrrrrrrrr}
$x$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
$\texttt{ancestor}(x,1)$ & 0 & 1 & 4 & 1 & 1 & 2 & 4 & 7 \\
$\texttt{ancestor}(x,2)$ & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 4 \\
$\texttt{ancestor}(x,4)$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
$\cdots$ \\
\end{tabular}
\end{center}
The preprocessing takes $O(n \log n)$ time,
because $O(\log n)$ values are calculated for each node.
After this, any value of $\texttt{ancestor}(x,k)$ can be calculated
in $O(\log k)$ time by representing $k$
as a sum where each term is a power of two.
\section{Subtrees and paths}
\index{tree traversal array}
A \key{tree traversal array} contains the nodes of a rooted tree
in the order in which a depth-first search
from the root node visits them.
For example, in the tree
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (-3,1) {$2$};
\node[draw, circle] (3) at (-1,1) {$3$};
\node[draw, circle] (4) at (1,1) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (-3,-1) {$6$};
\node[draw, circle] (7) at (-0.5,-1) {$7$};
\node[draw, circle] (8) at (1,-1) {$8$};
\node[draw, circle] (9) at (2.5,-1) {$9$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (6);
\path[draw,thick,-] (4) -- (7);
\path[draw,thick,-] (4) -- (8);
\path[draw,thick,-] (4) -- (9);
\end{tikzpicture}
\end{center}
a depth-first search proceeds as follows:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (-3,1) {$2$};
\node[draw, circle] (3) at (-1,1) {$3$};
\node[draw, circle] (4) at (1,1) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (-3,-1) {$6$};
\node[draw, circle] (7) at (-0.5,-1) {$7$};
\node[draw, circle] (8) at (1,-1) {$8$};
\node[draw, circle] (9) at (2.5,-1) {$9$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (6);
\path[draw,thick,-] (4) -- (7);
\path[draw,thick,-] (4) -- (8);
\path[draw,thick,-] (4) -- (9);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend right=15] (6);
\path[draw=red,thick,->,line width=2pt] (6) edge [bend right=15] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend right=15] (1);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend right=15] (1);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (4);
\path[draw=red,thick,->,line width=2pt] (4) edge [bend right=15] (7);
\path[draw=red,thick,->,line width=2pt] (7) edge [bend right=15] (4);
\path[draw=red,thick,->,line width=2pt] (4) edge [bend right=15] (8);
\path[draw=red,thick,->,line width=2pt] (8) edge [bend right=15] (4);
\path[draw=red,thick,->,line width=2pt] (4) edge [bend right=15] (9);
\path[draw=red,thick,->,line width=2pt] (9) edge [bend right=15] (4);
\path[draw=red,thick,->,line width=2pt] (4) edge [bend right=15] (1);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (5);
\path[draw=red,thick,->,line width=2pt] (5) edge [bend right=15] (1);
\end{tikzpicture}
\end{center}
Hence, the corresponding tree traversal array is as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (9,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
%
% \footnotesize
% \node at (0.5,1.4) {$1$};
% \node at (1.5,1.4) {$2$};
% \node at (2.5,1.4) {$3$};
% \node at (3.5,1.4) {$4$};
% \node at (4.5,1.4) {$5$};
% \node at (5.5,1.4) {$6$};
% \node at (6.5,1.4) {$7$};
% \node at (7.5,1.4) {$8$};
% \node at (8.5,1.4) {$9$};
\end{tikzpicture}
\end{center}
\subsubsection{Subtree queries}
Each subtree of a tree corresponds to a subarray
of the tree traversal array such that
the first element of the subarray is the root node.
For example, the following subarray contains the
nodes of the subtree of node $4$:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=lightgray] (4,0) rectangle (8,1);
\draw (0,0) grid (9,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
%
% \footnotesize
% \node at (0.5,1.4) {$1$};
% \node at (1.5,1.4) {$2$};
% \node at (2.5,1.4) {$3$};
% \node at (3.5,1.4) {$4$};
% \node at (4.5,1.4) {$5$};
% \node at (5.5,1.4) {$6$};
% \node at (6.5,1.4) {$7$};
% \node at (7.5,1.4) {$8$};
% \node at (8.5,1.4) {$9$};
\end{tikzpicture}
\end{center}
Using this fact, we can efficiently process queries
that are related to subtrees of a tree.
As an example, consider a problem where each node
is assigned a value, and our task is to support
the following queries:
\begin{itemize}
\item update the value of a node
\item calculate the sum of values in the subtree of a node
\end{itemize}
Consider the following tree where the blue numbers
are the values of the nodes.
For example, the sum of the subtree of node $4$
is $3+4+3+1=11$.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (-3,1) {$2$};
\node[draw, circle] (3) at (-1,1) {$3$};
\node[draw, circle] (4) at (1,1) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (-3,-1) {$6$};
\node[draw, circle] (7) at (-0.5,-1) {$7$};
\node[draw, circle] (8) at (1,-1) {$8$};
\node[draw, circle] (9) at (2.5,-1) {$9$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (6);
\path[draw,thick,-] (4) -- (7);
\path[draw,thick,-] (4) -- (8);
\path[draw,thick,-] (4) -- (9);
\node[color=blue] at (0,3+0.65) {2};
\node[color=blue] at (-3-0.65,1) {3};
\node[color=blue] at (-1-0.65,1) {5};
\node[color=blue] at (1+0.65,1) {3};
\node[color=blue] at (3+0.65,1) {1};
\node[color=blue] at (-3,-1-0.65) {4};
\node[color=blue] at (-0.5,-1-0.65) {4};
\node[color=blue] at (1,-1-0.65) {3};
\node[color=blue] at (2.5,-1-0.65) {1};
\end{tikzpicture}
\end{center}
The idea is to construct a tree traversal array that contains
three values for each node: the identifier of the node,
the size of the subtree, and the value of the node.
For example, the array for the above tree is as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,1) grid (9,-2);
\node[left] at (-1,0.5) {node id};
\node[left] at (-1,-0.5) {subtree size};
\node[left] at (-1,-1.5) {node value};
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
\node at (0.5,-0.5) {$9$};
\node at (1.5,-0.5) {$2$};
\node at (2.5,-0.5) {$1$};
\node at (3.5,-0.5) {$1$};
\node at (4.5,-0.5) {$4$};
\node at (5.5,-0.5) {$1$};
\node at (6.5,-0.5) {$1$};
\node at (7.5,-0.5) {$1$};
\node at (8.5,-0.5) {$1$};
\node at (0.5,-1.5) {$2$};
\node at (1.5,-1.5) {$3$};
\node at (2.5,-1.5) {$4$};
\node at (3.5,-1.5) {$5$};
\node at (4.5,-1.5) {$3$};
\node at (5.5,-1.5) {$4$};
\node at (6.5,-1.5) {$3$};
\node at (7.5,-1.5) {$1$};
\node at (8.5,-1.5) {$1$};
%
% \footnotesize
% \node at (0.5,1.4) {$1$};
% \node at (1.5,1.4) {$2$};
% \node at (2.5,1.4) {$3$};
% \node at (3.5,1.4) {$4$};
% \node at (4.5,1.4) {$5$};
% \node at (5.5,1.4) {$6$};
% \node at (6.5,1.4) {$7$};
% \node at (7.5,1.4) {$8$};
% \node at (8.5,1.4) {$9$};
\end{tikzpicture}
\end{center}
Using this array, we can calculate the sum of values
in any subtree by first finding out the size of the subtree
and then the values of the corresponding nodes.
For example, the values in the subtree of node $4$
can be found as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=lightgray] (4,1) rectangle (5,0);
\fill[color=lightgray] (4,0) rectangle (5,-1);
\fill[color=lightgray] (4,-1) rectangle (8,-2);
\draw (0,1) grid (9,-2);
\node[left] at (-1,0.5) {node id};
\node[left] at (-1,-0.5) {subtree size};
\node[left] at (-1,-1.5) {node value};
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
\node at (0.5,-0.5) {$9$};
\node at (1.5,-0.5) {$2$};
\node at (2.5,-0.5) {$1$};
\node at (3.5,-0.5) {$1$};
\node at (4.5,-0.5) {$4$};
\node at (5.5,-0.5) {$1$};
\node at (6.5,-0.5) {$1$};
\node at (7.5,-0.5) {$1$};
\node at (8.5,-0.5) {$1$};
\node at (0.5,-1.5) {$2$};
\node at (1.5,-1.5) {$3$};
\node at (2.5,-1.5) {$4$};
\node at (3.5,-1.5) {$5$};
\node at (4.5,-1.5) {$3$};
\node at (5.5,-1.5) {$4$};
\node at (6.5,-1.5) {$3$};
\node at (7.5,-1.5) {$1$};
\node at (8.5,-1.5) {$1$};
%
% \footnotesize
% \node at (0.5,1.4) {$1$};
% \node at (1.5,1.4) {$2$};
% \node at (2.5,1.4) {$3$};
% \node at (3.5,1.4) {$4$};
% \node at (4.5,1.4) {$5$};
% \node at (5.5,1.4) {$6$};
% \node at (6.5,1.4) {$7$};
% \node at (7.5,1.4) {$8$};
% \node at (8.5,1.4) {$9$};
\end{tikzpicture}
\end{center}
To answer the queries efficiently,
it suffices to store the values of the
nodes in a binary indexed or segment tree.
After this, we can both update a value
and calculate the sum of values in $O(\log n)$ time.
\subsubsection{Path queries}
Using a tree traversal array, we can also efficiently
calculate sums of values on
paths from the root node to any
node of the tree.
Consider a problem where our task
is to support the following queries:
\begin{itemize}
\item change the value of a node
\item calculate the sum of values on a path from
the root to a node
\end{itemize}
For example, in the following tree,
the sum of values from the root node to node 7 is
$4+5+5=14$:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (-3,1) {$2$};
\node[draw, circle] (3) at (-1,1) {$3$};
\node[draw, circle] (4) at (1,1) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (-3,-1) {$6$};
\node[draw, circle] (7) at (-0.5,-1) {$7$};
\node[draw, circle] (8) at (1,-1) {$8$};
\node[draw, circle] (9) at (2.5,-1) {$9$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (6);
\path[draw,thick,-] (4) -- (7);
\path[draw,thick,-] (4) -- (8);
\path[draw,thick,-] (4) -- (9);
\node[color=blue] at (0,3+0.65) {4};
\node[color=blue] at (-3-0.65,1) {5};
\node[color=blue] at (-1-0.65,1) {3};
\node[color=blue] at (1+0.65,1) {5};
\node[color=blue] at (3+0.65,1) {2};
\node[color=blue] at (-3,-1-0.65) {3};
\node[color=blue] at (-0.5,-1-0.65) {5};
\node[color=blue] at (1,-1-0.65) {3};
\node[color=blue] at (2.5,-1-0.65) {1};
\end{tikzpicture}
\end{center}
We can solve this problem like before,
but now each value in the last row of the array is the sum of values
on a path from the root to the node.
For example, the following array corresponds to the above tree:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,1) grid (9,-2);
\node[left] at (-1,0.5) {node id};
\node[left] at (-1,-0.5) {subtree size};
\node[left] at (-1,-1.5) {path sum};
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
\node at (0.5,-0.5) {$9$};
\node at (1.5,-0.5) {$2$};
\node at (2.5,-0.5) {$1$};
\node at (3.5,-0.5) {$1$};
\node at (4.5,-0.5) {$4$};
\node at (5.5,-0.5) {$1$};
\node at (6.5,-0.5) {$1$};
\node at (7.5,-0.5) {$1$};
\node at (8.5,-0.5) {$1$};
\node at (0.5,-1.5) {$4$};
\node at (1.5,-1.5) {$9$};
\node at (2.5,-1.5) {$12$};
\node at (3.5,-1.5) {$7$};
\node at (4.5,-1.5) {$9$};
\node at (5.5,-1.5) {$14$};
\node at (6.5,-1.5) {$12$};
\node at (7.5,-1.5) {$10$};
\node at (8.5,-1.5) {$6$};
\end{tikzpicture}
\end{center}
When the value of a node increases by $x$,
the sums of all nodes in its subtree increase by $x$.
For example, if the value of node 4 increases by 1,
the array changes as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=lightgray] (4,-1) rectangle (8,-2);
\draw (0,1) grid (9,-2);
\node[left] at (-1,0.5) {node id};
\node[left] at (-1,-0.5) {subtree size};
\node[left] at (-1,-1.5) {path sum};
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$4$};
\node at (5.5,0.5) {$7$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\node at (8.5,0.5) {$5$};
\node at (0.5,-0.5) {$9$};
\node at (1.5,-0.5) {$2$};
\node at (2.5,-0.5) {$1$};
\node at (3.5,-0.5) {$1$};
\node at (4.5,-0.5) {$4$};
\node at (5.5,-0.5) {$1$};
\node at (6.5,-0.5) {$1$};
\node at (7.5,-0.5) {$1$};
\node at (8.5,-0.5) {$1$};
\node at (0.5,-1.5) {$4$};
\node at (1.5,-1.5) {$9$};
\node at (2.5,-1.5) {$12$};
\node at (3.5,-1.5) {$7$};
\node at (4.5,-1.5) {$10$};
\node at (5.5,-1.5) {$15$};
\node at (6.5,-1.5) {$13$};
\node at (7.5,-1.5) {$11$};
\node at (8.5,-1.5) {$6$};
\end{tikzpicture}
\end{center}
Thus, to support both the operations,
we should be able to increase all values
in a range and retrieve a single value.
This can be done in $O(\log n)$ time
using a binary indexed
or segment tree (see Chapter 9.4).
\section{Lowest common ancestor}
\index{lowest common ancestor}
The \key{lowest common ancestor}
of two nodes of a rooted tree is the lowest node
whose subtree contains both the nodes.
A typical problem is to efficiently process
queries that ask to find the lowest
common ancestor of two nodes.
For example, in the following tree,
the lowest common ancestor of nodes 5 and 8
is node 2:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$4$};
\node[draw, circle] (3) at (-2,1) {$2$};
\node[draw, circle] (4) at (0,1) {$3$};
\node[draw, circle] (5) at (2,-1) {$7$};
\node[draw, circle, fill=lightgray] (6) at (-3,-1) {$5$};
\node[draw, circle] (7) at (-1,-1) {$6$};
\node[draw, circle, fill=lightgray] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,->,line width=2pt] (6) edge [bend left] (3);
\path[draw=red,thick,->,line width=2pt] (8) edge [bend right=40] (3);
\end{tikzpicture}
\end{center}
Next we will discuss two efficient techniques for
finding the lowest common ancestor of two nodes.
\subsubsection{Method 1}
One way to solve the problem is to use the fact
that we can efficiently find the $k$th
ancestor of any node in the tree.
Using this, we can divide the problem of
finding the lowest common ancestor into two parts.
We use two pointers that initially point to the
two nodes whose lowest common ancestor we should find.
First, we move one of the pointers upwards
so that both pointers point to nodes at the same level.
In the example scenario, we move the second pointer one
level up so that it points to node 6
which is at the same level with node 5:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$4$};
\node[draw, circle] (3) at (-2,1) {$2$};
\node[draw, circle] (4) at (0,1) {$3$};
\node[draw, circle] (5) at (2,-1) {$7$};
\node[draw, circle,fill=lightgray] (6) at (-3,-1) {$5$};
\node[draw, circle,fill=lightgray] (7) at (-1,-1) {$6$};
\node[draw, circle] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,->,line width=2pt] (8) edge [bend right] (7);
\end{tikzpicture}
\end{center}
After this, we determine the minimum number of steps
needed to move both pointers upwards so that
they will point to the same node.
The node to which the pointers point after this
is the lowest common ancestor.
In the example scenario, it suffices to move both pointers
one step upwards to node 2,
which is the lowest common ancestor:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$4$};
\node[draw, circle,fill=lightgray] (3) at (-2,1) {$2$};
\node[draw, circle] (4) at (0,1) {$3$};
\node[draw, circle] (5) at (2,-1) {$7$};
\node[draw, circle] (6) at (-3,-1) {$5$};
\node[draw, circle] (7) at (-1,-1) {$6$};
\node[draw, circle] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,->,line width=2pt] (6) edge [bend left] (3);
\path[draw=red,thick,->,line width=2pt] (7) edge [bend right] (3);
\end{tikzpicture}
\end{center}
Since both parts of the algorithm can be performed in
$O(\log n)$ time using precomputed information,
we can find the lowest common ancestor of any two
nodes in $O(\log n)$ time.
\subsubsection{Method 2}
Another way to solve the problem is based on
a tree traversal array\footnote{This lowest common ancestor algorithm was presented in \cite{ben00}.
This technique is sometimes called the \index{Euler tour technique}
\key{Euler tour technique} \cite{tar84}.}.
Once again, the idea is to traverse the nodes
using a depth-first search:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$4$};
\node[draw, circle] (3) at (-2,1) {$2$};
\node[draw, circle] (4) at (0,1) {$3$};
\node[draw, circle] (5) at (2,-1) {$7$};
\node[draw, circle] (6) at (-3,-1) {$5$};
\node[draw, circle] (7) at (-1,-1) {$6$};
\node[draw, circle] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend right=15] (6);
\path[draw=red,thick,->,line width=2pt] (6) edge [bend right=15] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend right=15] (7);
\path[draw=red,thick,->,line width=2pt] (7) edge [bend right=15] (8);
\path[draw=red,thick,->,line width=2pt] (8) edge [bend right=15] (7);
\path[draw=red,thick,->,line width=2pt] (7) edge [bend right=15] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend right=15] (1);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (4);
\path[draw=red,thick,->,line width=2pt] (4) edge [bend right=15] (1);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend right=15] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend right=15] (5);
\path[draw=red,thick,->,line width=2pt] (5) edge [bend right=15] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend right=15] (1);
\end{tikzpicture}
\end{center}
However, we use a different tree
traversal array than before:
we add each node to the array \emph{always}
when the depth-first search walks through the node,
and not only at the first visit.
Hence, a node that has $k$ children appears $k+1$ times
in the array and there are a total of $2n-1$
nodes in the array.
We store two values in the array:
the identifier of the node and the depth of the
node in the tree.
The following array corresponds to the above tree:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\node[left] at (-1,1.5) {node id};
\node[left] at (-1,0.5) {depth};
\draw (0,1) grid (15,2);
\node at (0.5,1.5) {$1$};
\node at (1.5,1.5) {$2$};
\node at (2.5,1.5) {$5$};
\node at (3.5,1.5) {$2$};
\node at (4.5,1.5) {$6$};
\node at (5.5,1.5) {$8$};
\node at (6.5,1.5) {$6$};
\node at (7.5,1.5) {$2$};
\node at (8.5,1.5) {$1$};
\node at (9.5,1.5) {$3$};
\node at (10.5,1.5) {$1$};
\node at (11.5,1.5) {$4$};
\node at (12.5,1.5) {$7$};
\node at (13.5,1.5) {$4$};
\node at (14.5,1.5) {$1$};
\draw (0,0) grid (15,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$3$};
\node at (3.5,0.5) {$2$};
\node at (4.5,0.5) {$3$};
\node at (5.5,0.5) {$4$};
\node at (6.5,0.5) {$3$};
\node at (7.5,0.5) {$2$};
\node at (8.5,0.5) {$1$};
\node at (9.5,0.5) {$2$};
\node at (10.5,0.5) {$1$};
\node at (11.5,0.5) {$2$};
\node at (12.5,0.5) {$3$};
\node at (13.5,0.5) {$2$};
\node at (14.5,0.5) {$1$};
\footnotesize
\node at (0.5,2.5) {$0$};
\node at (1.5,2.5) {$1$};
\node at (2.5,2.5) {$2$};
\node at (3.5,2.5) {$3$};
\node at (4.5,2.5) {$4$};
\node at (5.5,2.5) {$5$};
\node at (6.5,2.5) {$6$};
\node at (7.5,2.5) {$7$};
\node at (8.5,2.5) {$8$};
\node at (9.5,2.5) {$9$};
\node at (10.5,2.5) {$10$};
\node at (11.5,2.5) {$11$};
\node at (12.5,2.5) {$12$};
\node at (13.5,2.5) {$13$};
\node at (14.5,2.5) {$14$};
\end{tikzpicture}
\end{center}
Now we can find the lowest common ancestor
of nodes $a$ and $b$ by finding the node with the \emph{minimum} depth
between nodes $a$ and $b$ in the array.
For example, the lowest common ancestor of nodes $5$ and $8$
can be found as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\node[left] at (-1,1.5) {node id};
\node[left] at (-1,0.5) {depth};
\fill[color=lightgray] (2,1) rectangle (3,2);
\fill[color=lightgray] (5,1) rectangle (6,2);
\fill[color=lightgray] (2,0) rectangle (6,1);
\node at (3.5,-0.5) {$\uparrow$};
\draw (0,1) grid (15,2);
\node at (0.5,1.5) {$1$};
\node at (1.5,1.5) {$2$};
\node at (2.5,1.5) {$5$};
\node at (3.5,1.5) {$2$};
\node at (4.5,1.5) {$6$};
\node at (5.5,1.5) {$8$};
\node at (6.5,1.5) {$6$};
\node at (7.5,1.5) {$2$};
\node at (8.5,1.5) {$1$};
\node at (9.5,1.5) {$3$};
\node at (10.5,1.5) {$1$};
\node at (11.5,1.5) {$4$};
\node at (12.5,1.5) {$7$};
\node at (13.5,1.5) {$4$};
\node at (14.5,1.5) {$1$};
\draw (0,0) grid (15,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$3$};
\node at (3.5,0.5) {$2$};
\node at (4.5,0.5) {$3$};
\node at (5.5,0.5) {$4$};
\node at (6.5,0.5) {$3$};
\node at (7.5,0.5) {$2$};
\node at (8.5,0.5) {$1$};
\node at (9.5,0.5) {$2$};
\node at (10.5,0.5) {$1$};
\node at (11.5,0.5) {$2$};
\node at (12.5,0.5) {$3$};
\node at (13.5,0.5) {$2$};
\node at (14.5,0.5) {$1$};
\footnotesize
\node at (0.5,2.5) {$0$};
\node at (1.5,2.5) {$1$};
\node at (2.5,2.5) {$2$};
\node at (3.5,2.5) {$3$};
\node at (4.5,2.5) {$4$};
\node at (5.5,2.5) {$5$};
\node at (6.5,2.5) {$6$};
\node at (7.5,2.5) {$7$};
\node at (8.5,2.5) {$8$};
\node at (9.5,2.5) {$9$};
\node at (10.5,2.5) {$10$};
\node at (11.5,2.5) {$11$};
\node at (12.5,2.5) {$12$};
\node at (13.5,2.5) {$13$};
\node at (14.5,2.5) {$14$};
\end{tikzpicture}
\end{center}
Node 5 is at position 2, node 8 is at position 5,
and the node with minimum depth between
positions $2 \ldots 5$ is node 2 at position 3
whose depth is 2.
Thus, the lowest common ancestor of
nodes 5 and 8 is node 2.
Thus, to find the lowest common ancestor
of two nodes it suffices to process a range
minimum query.
Since the array is static,
we can process such queries in $O(1)$ time
after an $O(n \log n)$ time preprocessing.
\subsubsection{Distances of nodes}
The distance between nodes $a$ and $b$
equals the length of the path from $a$ to $b$.
It turns out that the problem of calculating
the distance between nodes reduces to
finding their lowest common ancestor.
First, we root the tree arbitrarily.
After this, the distance of nodes $a$ and $b$
can be calculated using the formula
\[\texttt{depth}(a)+\texttt{depth}(b)-2 \cdot \texttt{depth}(c),\]
where $c$ is the lowest common ancestor of $a$ and $b$
and $\texttt{depth}(s)$ denotes the depth of node $s$.
For example, consider the distance of nodes 5 and 8:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (2,1) {$4$};
\node[draw, circle] (3) at (-2,1) {$2$};
\node[draw, circle] (4) at (0,1) {$3$};
\node[draw, circle] (5) at (2,-1) {$7$};
\node[draw, circle] (6) at (-3,-1) {$5$};
\node[draw, circle] (7) at (-1,-1) {$6$};
\node[draw, circle] (8) at (-1,-3) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (7);
\path[draw,thick,-] (7) -- (8);
\path[draw=red,thick,-,line width=2pt] (8) -- node[font=\small] {} (7);
\path[draw=red,thick,-,line width=2pt] (7) -- node[font=\small] {} (3);
\path[draw=red,thick,-,line width=2pt] (6) -- node[font=\small] {} (3);
\end{tikzpicture}
\end{center}
The lowest common ancestor of nodes 5 and 8 is node 2.
The depths of the nodes are
$\texttt{depth}(5)=3$, $\texttt{depth}(8)=4$ and $\texttt{depth}(2)=2$,
so the distance between nodes 5 and 8 is
$3+4-2\cdot2=3$.
\section{Offline algorithms}
So far, we have discussed \emph{online} algorithms
for tree queries.
Those algorithms are able to process
queries one after another so that
each query is answered before receiving the next query.
However, in many problems, the online
property is not necessary.
In this section, we focus on \emph{offline} algorithms.
Those algorithms are given a set of queries which can
be answered in any order.
It is often easier to design an offline algorithm
compared to an online algorithm.
\subsubsection{Merging data structures}
One method to construct an offline algorithm
is to perform a depth-first tree traversal
and maintain data structures in nodes.
At each node $s$, we create a data structure
$\texttt{d}[s]$ that is based on the
data structures of the children of $s$.
Then, using this data structure,
all queries related to $s$ are processed.
As an example, consider the following problem:
We are given a tree where each node has some value.
Our task is to process queries of the form
''calculate the number of nodes with value $x$
in the subtree of node $s$''.
For example, in the following tree,
the subtree of node $4$ contains two nodes
whose value is 3.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,3) {$1$};
\node[draw, circle] (2) at (-3,1) {$2$};
\node[draw, circle] (3) at (-1,1) {$3$};
\node[draw, circle] (4) at (1,1) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (-3,-1) {$6$};
\node[draw, circle] (7) at (-0.5,-1) {$7$};
\node[draw, circle] (8) at (1,-1) {$8$};
\node[draw, circle] (9) at (2.5,-1) {$9$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (6);
\path[draw,thick,-] (4) -- (7);
\path[draw,thick,-] (4) -- (8);
\path[draw,thick,-] (4) -- (9);
\node[color=blue] at (0,3+0.65) {2};
\node[color=blue] at (-3-0.65,1) {3};
\node[color=blue] at (-1-0.65,1) {5};
\node[color=blue] at (1+0.65,1) {3};
\node[color=blue] at (3+0.65,1) {1};
\node[color=blue] at (-3,-1-0.65) {4};
\node[color=blue] at (-0.5,-1-0.65) {4};
\node[color=blue] at (1,-1-0.65) {3};
\node[color=blue] at (2.5,-1-0.65) {1};
\end{tikzpicture}
\end{center}
In this problem, we can use map structures
to answer the queries.
For example, the maps for node 4 and
its children are as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\node[draw, rectangle] (a) at (4,5.5)
{
\footnotesize
\begin{tabular}{rrr}
4 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (b) at (8,5.5)
{
\footnotesize
\begin{tabular}{rrr}
3 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (c) at (12,5.5)
{
\footnotesize
\begin{tabular}{rr}
1 \\