-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresolution0.pl
722 lines (629 loc) · 27.8 KB
/
resolution0.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
c :- consult(resolution0).
/*
Propositional theorem prover -
resolution with pure literal and subsumption elimination,
implemented in ISO Prolog.
Educational software.
Version of 2023/03/11
https://github.com/plazajan
Copyright 1987-2023, Jan A. Plaza
This file is part of Prolog-Propositinal-Resolution.
Prolog-Propositinal-Resolution is free software:
you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
Prolog-Propositinal-Resolution is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Prolog-Propositinal-Resolution.
If not, see https://www.gnu.org/licenses/.
****************************************************************************
****************************************************************************
****** ******
****** PROPOSITIONAL RESOLUTION ******
****** ******
****** Jan A. Plaza ******
****** ******
****** 1987, revised 3/2023 ******
****** ******
****************************************************************************
****************************************************************************
*/
/*
****************************************************************************
SET AND LIST OPERATIONS
****************************************************************************
A *set* is a sorted list without duplicates (sorted by Prolog's @<.)
This is a canonical representation of a set as in mathematics - of a collection
of elements without duplicates, whose order does not matter.
Two sets are defined to be equal if they contain the same elements.
Names of procedures/operations on the domain of sets begin with 's_'.
Arguments of such procedures and the values they return are sets.
(Later, clauses will be sets -- sorted lists, no duplicates.)
Elements of sets and osets are arbitrary ground terms.
Two elements are equal if they are egual in the sense of Prolog's == ,
so 2+1 and 3 are different.
Testing if two sets have the same elements is Theta(n),
while testing if two lists have the same elements is O(n log n).
The same about testing if a set is a subset of another.
*/
% memberGen(++List, -*Item) finite terminating/closed generator -
% each redo terminates (last redo fails).
% Works for any list, including sets and osets.
memberGen(List, Item) :-
member(Item, List).
% memberRemainderGen(++List, -*Item, -*Remainder) finite terminating/closed
% generator -
% each redo terminates (last redo fails).
% Remainder is List with Item removed.
% Works for any list, including sets.
memberRemainderGen([Item|Rest], Item, Rest).
memberRemainderGen([X|Rest], Item, [X|Remainder]) :-
% Item \== X;
memberRemainderGen(Rest, Item, Remainder).
% memberTest(++Item, ++Oset) test.
% Works for any list, including sets.
memberTest(X, O_Set) :-
member(X, O_Set), !. % the cut makes is a test - no choice point saved.
% s_member(++Item, ++Set) test.
s_member(X, [Y| Rest]) :-
X @> Y, !,
s_member(X, Rest).
s_member(X, [X|_Rest]).
% s_add(++Item, ++Set, -ResultSet) function.
s_add(X, [Y|Rest], [Y|NewRest]) :-
X @> Y, !,
s_add(X, Rest, NewRest).
s_add(X, [X|Rest], [X|Rest]) :- !. % no duplicates
s_add(X, List, [X|List]).
% s_remove(++Item, ++Set, -ResultSet) function.
s_remove( X, [Y|Rest], [Y|NewRest]) :-
X@>Y, !,
s_remove(X, Rest, NewRest).
s_remove( X, [X|Rest], Rest) :- !.
s_remove(_X, List, List).
% s_subset(++Set1, ++Set2) test.
s_subset([X1|Rest1], [X2|Rest2]) :-
X1 @> X2, !,
s_subset([X1|Rest1], Rest2).
s_subset([X|Rest1], [X|Rest2]) :-
s_subset(Rest1, Rest2).
s_subset([], _Set).
%s_union(++Set1, ++Set2, -ResultSet) function.
s_union([X1|Rest1], [X2|Rest2], [X1|NewRest]) :-
X1 @< X2, !,
s_union(Rest1, [X2|Rest2], NewRest).
s_union([X1|Rest1], [X2|Rest2], [X2|NewRest]) :-
X1 @> X2, !,
s_union([X1|Rest1], Rest2, NewRest).
s_union([X|Rest1], [X| Rest2], Result) :- !,
s_union(Rest1, [X|Rest2], Result).
s_union([], S_Set, S_Set) :- !. % the cut makes it a function - no choice point.
s_union(S_Set, [], S_Set).
/*
****************************************************************************
SUBSUMPTION AND ANTICHAINS
****************************************************************************
Subsumption is a concept concerning clauses (sets of literals),
but in the propositional case, it is purely set theoretical -
it does not depend on the nature of the elements of such sets,
and we use it here for sets of arbitrary elements.
Clause1 is *subsumed*by* Clause2 iff Clause2 is a subset of Clause1.
Set1 is *subsumed*by* Set2 iff Set2 is a subset of Set1.
A Set is subsumed by a list of sets
iff it is subsumed by a member of the list.
A Clause is subsumed by a list of clauses
iff it is subsumed by a member of the list.
(If so, Clause is not needed for the resolution.)
An antichain is a set of sets, where
no element is a subset of another element, i.e.
every two distinct elements are incomparable by the subset relation.
We will form antichains of clauses. Notice that, in the propositional case,
an antichain of clauses is a set of clauses where no clauses subsumes
another.
*/
% presentIn(++Item, ++ListOfSets) test.
presentIn(Item, ListOfSets) :-
memberGen(ListOfSets, Set),
s_member(Item, Set), !. % The cut makes it a test.
% subsumed(++Set, ++ListOfSets) test.
% Set is subsumed by ListOfSets.
subsumed(Set1, [ Set2|_Rest]) :-
s_subset(Set2, Set1), !.
subsumed(Set1, [_Set2|Rest]) :-
/* \+ s_subset(_Set2, Set1), */
subsumed(Set1, Rest).
% removeSubsumed(++Set, ++ListOfSets, -ResultListOfSets) function.
% Remove from ListOfSets the clauses subsumed by Set.
removeSubsumed( Set1, [Set2|Rest], NewRest) :-
s_subset(Set1, Set2), !,
removeSubsumed(Set1, Rest, NewRest).
removeSubsumed( Set1, [Set2|Rest], [Set2|NewRest]) :-
% \+ s_subset(Set1, Set2),
!,
removeSubsumed(Set1, Rest, NewRest).
removeSubsumed(_Set, [], []).
% addSetToAntiChain(++Set, ++AntiChain, -ResultAntiChain) function.
addSetToAntiChain(Set, AC, AC) :- % A subsumed Set is not added to AC.
subsumed(Set, AC), !.
addSetToAntiChain(Set, AC, [Set|NewAC]) :- % When Set is added to AC
removeSubsumed(Set, AC, NewAC). % subsumed AC members are removed.
% unionWithSubsElim(++ListOfSets, ++AntiChain, -ResultAntiChain)
% function.
unionWithSubsElim([], AC, AC).
unionWithSubsElim([Set|Rest], AC, NewAC) :-
subsumed(Set, AC), !,
unionWithSubsElim(Rest, AC, NewAC).
unionWithSubsElim([Set|Rest], AC, [Set|NewRest]) :-
% \+ subsumed(Set, AC),
removeSubsumed(Set, AC, TempAC),
unionWithSubsElim(Rest, TempAC, NewRest).
/*
addSetToAntiChain predicate makes two passes over the antichain (2nd argument),
in the worst case. One could always complete the operation in one pass
if the antichain were sorted by an s2=< total order:
Set1 s2=< Set2 iff length(Set1) < length(Set2) or
(length(Set1) == length(Set2) and Set1 @=< Set2).
This is different from Prolog's standard total order of terms, because
[a,b] @< [c] while [c] s2=< [a,b].
An implementation would be straightforward to do in a procedural programming
language but becomes complicated while using Prolog.
*/
/*
****************************************************************************
OPERATORS
****************************************************************************
The following operators can be used to build propositional formulas.
Constants 'true', 'false' are also allowed.
As propositional letters you can use Prolog atoms or numbers,
so instead of p0, p1, ..., you can use just 0, 1, ...
*/
:- op(130, fy, not).
:- op(140, yfx, [and, or, nand, nor]). % left associative
:- op(150, xfy, [imp, nrimp]). % right associative
:- op(150, yfx, [rimp, nimp, minus]). % left associative
:- op(160, yfx, [equ, xor]). % left associative
% yfx - left-asociative: p and q and r means (p and q) and r.
% xfy - right-associative: p imp q imp r means p imp (q imp r)
% not 130 - binds strongest. equ,xor 160 - bind weakest.
% Every connective has the same precedence and associativity type as its dual.
% nimp is the negated implication.
% minus is an alternative name for nimp;
% p minus q is equivalent to p and not q.
% p nimp q is equivalent to not (p imp q), is equivalent to p and not q.
% rimp is the reversed imp: p rimp q is equivalent to q imp p.
% nrimp is the negated reversed implication.
% p nrimp q is equivalent to not (p rimp q), is equivalent to q nimp p.
% p nor q is equivalent to not (p or q), sometimes written as downarrow.
% p nand q is equivalent to not (p and q), sometimes written as uparrow.
% The following unary operators can prefix a formula.
% tautology ++Formula is a test.
% satisfiable ++Formula is a test.
% cnf ++Formula is a success (side-effect: prints CNF).
:-op(650, fx, [tautology, satisfiable, cnf]).
% ++ListOfFormulas consequence ++Formula is a test.
:-op(660, xfx, consequence).
/*
****************************************************************************
FORMULAS
****************************************************************************
Every formula is conjunctive or disjunctive or negational or a truthConstant
or a literal.
A conjunctive formula is equivalent to the conjunction of its components.
A disjunctive formula is equivalent to the disjunction of its components.
A negational formula is equivalent to its component.
The component of truthConstant true is true.
The component of truthConstant false is false.
*/
% conjunctive(++Formula) test.
conjunctive(_ and _).
conjunctive(_ minus _).
conjunctive(_ nimp _).
conjunctive(_ nrimp _).
conjunctive(_ nor _).
conjunctive(_ equ _). % equ will be treated as a conjunction of two imps
conjunctive(not F) :-
disjunctive(F).
% disjunctive(++Formula) test.
disjunctive(_ or _).
disjunctive(_ imp _).
disjunctive(_ rimp _).
disjunctive(_ nand _).
disjunctive(_ xor _). % xor will be treated as a disjunction of two nimps
disjunctive(not F) :-
conjunctive(F).
% negational(++Formula) test.
% Note: not p isn't negational; it is a literal.
negational(not not _) :- !. % double negation
negational(not true) :- !.
negational(not false).
% truthConstant(++Formula) test.
truthConstant(true).
truthConstant(false).
% components(++Formula, -Formula1, -Formula2) function.
% Cuts are used below to make predicates functions (eliminate choice points);
% this is a matter of style, not correctness or efficiency.
components(X and Y, X, Y).
components(not(X and Y), not X, not Y) :- !.
components(X or Y, X, Y).
components(not(X or Y), not X, not Y) :- !.
components(X imp Y, not X, Y).
components(not(X imp Y), X, not Y) :- !.
components(X nrimp Y, not X, Y).
components(not(X nrimp Y), X, not Y) :- !.
components(X minus Y, X, not Y). % minus is just another name for nimp.
components(not(X minus Y), not X, Y) :- !.
components(X nimp Y, X, not Y).
components(not(X nimp Y), not X, Y) :- !.
components(X rimp Y, X, not Y).
components(not(X rimp Y), not X, Y) :- !.
components(X nand Y, not X, not Y).
components(not(X nand Y), X, Y) :- !.
components(X nor Y, not X, not Y).
components(not(X nor Y), X, Y) :- !.
components(X equ Y, X imp Y, Y imp X).
components(not(X equ Y), X nimp Y, Y nimp X) :- !.
components(X xor Y, X nimp Y, Y nimp X).
components(not(X xor Y), X imp Y, Y imp X).
% component(++Formula, -Component) function.
component(not not X, X) :- !.
component(not true, false) :- !.
component(not false, true).
component(true, true).
component(false, false).
% makeConjunction(++ListOfFormulas, -Conjunction) function.
makeConjunction([], true) :- !.
makeConjunction([Formula], Formula) :- !.
makeConjunction([Formula | Rest], Formula and Temp) :-
makeConjunction(Rest, Temp).
/*
******************************************************************************
CLAUSE MANIPULATION
******************************************************************************
A clause is a disjunction of literals.
In this program a clause is represented as a set of literals,
i.e. as a sorted list without duplicates.
A generalized clause - gclause - allows arbitrary formulas, not just literals.
A lists of clauses represents a conjunction.
In this program a list of clauses is an oset (ordered set),
which satisfies an additional condition: no clause subsumes another.
*/
% addToGClause(++Formula, ++GClause, -ResultGClause) function.
% This procedure is used only in the definition of the procedure cnf.
% NOTE: we add (p and q) to a gclause, even if it contains (q and p),
% but the cnf procedure will take care of that.
addToGClause(false, GClause, GClause) :- !.
addToGClause(true, _GClause, [true]) :- !.
addToGClause(_, [true], [true]) :- !.
addToGClause(not X, GClause, [true]) :-
s_member(X, GClause), !.
addToGClause(X, GClause, [true]) :-
s_member(not X, GClause), !.
addToGClause(X, GClause, NewGClause) :-
s_add(X, GClause, NewGClause).
% addGClauseToAntiChain(++GClause, ++ListOfGClauses, -ResultListOfGClauses) function.
% This procedure is used only in the definition of the procedure cnf.
addGClauseToAntiChain( [true], List, List) :- !. % Adding true to a conjunction.
addGClauseToAntiChain( [], _List, [[]]) :- !. % Adding false to a conjunction.
addGClauseToAntiChain(_GClause, [[]], [[]]) :- !. % Adding to false conjunction.
addGClauseToAntiChain(GClause, List, NewList) :-
addSetToAntiChain(GClause, List, NewList).
% addClauseToAntiChain(++Clause, ++ListOfClauses, -ResultListOfClauses) function.
% This procedure is used only in the definition of the procedure newResolvents.
addClauseToAntiChain(Clause, ListOfClauses, ResultListOfClauses) :-
addGClauseToAntiChain(Clause, ListOfClauses, ResultListOfClauses).
% tautologyReduction(++Clause, -ResultClause) function.
% If Clause contains both not X and X, reduce Clause to [true].
% Such clauses are never created by addToGClause/3,
% but can be created in the resolution process, see resolvent/4.
tautologyReduction(Clause, [true]) :-
memberGen(Clause, not X),
s_member(X, Clause), !.
tautologyReduction(Clause, Clause).
/*
******************************************************************************
CONJUNCTIVE NORMAL FORM
******************************************************************************
CNF - conjunction of clauses, i.e. conjunction of disjunctions of literals.
*/
% cnf([[+Formula]], -AntiChainOfClauses) function.
% AntiChainOfClauses is a CNF corresponding to Formula. For representation
% details, see the introduction to CLAUSE MANIPULATION section.
% Note: cnf([[p and not p]], A) produces A=[[not p],[p]], not A=[[]].
% Note: one can factor out some code to reduce the calls to memberRemaiderGen
% but the code becomes less readable.
cnf([GClause|Rest], ResultList):-
memberRemainderGen(GClause, Formula, TempGClause),
(negational(Formula) ; truthConstant(Formula)), !,
% Needed for truthConstants, even though their components are trivial.
% Otherwise, we would have cnf([[false]],[[false]]), cnf([[true]],[[true]]),
% instead of cnf([[false]],[[]]), cnf([[true]],[]).
component(Formula, NewFormula),
addToGClause(NewFormula, TempGClause, NewGClause),
addGClauseToAntiChain(NewGClause, Rest, TempList),
cnf(TempList, ResultList).
cnf([GClause|Rest], ResultList) :-
memberRemainderGen(GClause, Alpha, TempGClause),
conjunctive(Alpha), !,
components(Alpha, Alpha1, Alpha2),
addToGClause(Alpha1, TempGClause, NewGClause1),
addToGClause(Alpha2, TempGClause, NewGClause2),
addGClauseToAntiChain(NewGClause1, Rest, TempList1),
addGClauseToAntiChain(NewGClause2, TempList1, TempList),
cnf(TempList, ResultList).
cnf([GClause|Rest], ResultList) :-
memberRemainderGen(GClause, Beta, TempGClause0),
disjunctive(Beta), !,
components(Beta, Beta1, Beta2),
addToGClause(Beta1, TempGClause0, TempGClause1),
addToGClause(Beta2, TempGClause1, NewGClause),
addGClauseToAntiChain(NewGClause, Rest, TempList),
cnf(TempList, ResultList).
cnf([Clause|Rest], [Clause|NewRest]) :- % Now, Clause contains only literals.
% none of the above tests holds,
cnf(Rest, NewRest).
cnf([], []).
/*
******************************************************************************
PRINTING CNF'S
******************************************************************************
*/
% cnf(++Formula) success. Side-effect: prints resulting CNF.
% Can be used as a unary prefix operator.
% | ?- cnf p and (q or not r). prints [q,-r] and [p].
cnf(Formula) :-
cnf([[Formula]], CNF),
printCNF(CNF).
% printCNF(++ListOfClauses) success. Side-effect: prints.
printCNF([]) :-
write(true), write('.'), nl.
printCNF([LastClause]) :- !,
printClause(LastClause), write('.'), nl.
printCNF([Clause|Rest]) :-
printClause(Clause), write(' and '),
printCNF(Rest).
% printClause(++Clause) success. Side-effect: prints.
printClause([]) :-
write(false), !.
printClause(Clause) :-
write('['),
printLiterals(Clause),
write(']').
% printLiterals(++Clause) success. Side-effect: prints.
% Prerequiste: Clause is a non-empty list of literals
printLiterals([not X]) :- !,
write('-'),
write(X).
printLiterals([X]) :- !,
write(X).
printLiterals([not X|Rest]) :- !,
write('-'),
write(X),
write(','),
printLiterals(Rest).
printLiterals([X|Rest]) :-
write(X),
write(','),
printLiterals(Rest).
/*
****************************************************************************
PURE LITERAL ELIMINATION
****************************************************************************
If a literal occurs in a list of clauses but the complementary literal does not,
the clause containing the literal is not needed in the resolution
and can be removed from the list.
After the clause is removed, the process needs to be repeated, becasuse the
clause removal might have caused that another literal to become a pure literal.
*/
% pureLiteralElim(++ListOfClauses, -ResultListOfClauses) function.
pureLiteralElim(List1, List2) :-
memberRemainderGen(List1, Clause, List0),
((memberGen(Clause, not Literal), \+ presentIn(Literal, List0))
;
(memberGen(Clause,Literal), atom(Literal), \+ presentIn(not Literal,List0))
), !,
pureLiteralElim(List0, List2).
pureLiteralElim(List, List).
/*
****************************************************************************
REFUTATION
****************************************************************************
*/
% refuted(++AntiChainOfClauses) test.
refuted(AntiChain) :-
refuted(AntiChain, AntiChain).
% refuted(++ListOfClauses1, ++ListOfClauses2) test.
refuted(List, _TotalList) :-
memberTest([], List), !.
refuted(List, _TotalList) :-
List=[], !, fail.
refuted(List, TotalList) :-
% Invariant: ListAtArgument1 is subsumed by ListAtArgument2.
newResolvents(List, TotalList, NewList),
unionWithSubsElim(NewList, TotalList, NewTotalList),
refuted(NewList, NewTotalList).
% newResolvents(++ListOfClauses1, ++ListOfClauses2, -ResultListOfClauses)
% function.
% ResultListOfClauses contains resolvents obtained by applying the resolution
% rule to all pairs Clause1, Clause2, where Clause1 in ListOfClauses1 and
% Clause2 in ListOfClauses2.
% Note: There is no need to try to resolve two propositional clauses in
% multiple ways. If Clause1 and Clause2 can be resolved in two different ways,
% there must be L1, L2 in Clause1 and -L1, -L2 in Clause2, and resolving with
% respect to either L1 or L2, produces a clause equivalent to [true]. The code
% below tries only once, and produces [true]. For instance:
% newResolvents([[p,q,r]], [[s,not p,not q]], NewResolventList)
% produces an empty/true conjunction of clauses: NewResolventList = [].
newResolvents([], _TotalList, []) :- !.
newResolvents(_List, [], []) :- !.
newResolvents([Clause1|Rest1], [Clause2|Rest2], NewList) :-
memberGen(Clause1, X),
atom(X),
s_member(not X, Clause2), !,
resolvent(Clause1, Clause2, X, NewClause),
newResolvents([Clause1], Rest2, List1),
newResolvents(Rest1, [Clause2], List2),
newResolvents(Rest1, Rest2, List3),
unionWithSubsElim(List1, List2, NewList1),
unionWithSubsElim(NewList1, List3, NewList2),
addClauseToAntiChain(NewClause, NewList2, NewList).
newResolvents([Clause1|Rest1], [Clause2|Rest2], NewList) :-
memberGen(Clause1, not X),
s_member(X, Clause2), !,
resolvent(Clause2, Clause1, X, NewClause),
newResolvents([Clause1], Rest2, List1),
newResolvents(Rest1, [Clause2], List2),
newResolvents(Rest1, Rest2, List3),
unionWithSubsElim(List1, List2, NewList1),
unionWithSubsElim(NewList1, List3, NewList2),
addClauseToAntiChain(NewClause, NewList2, NewList).
newResolvents([Clause1|Rest1], [Clause2|Rest2], NewList) :-
/* none of above, */
newResolvents([Clause1], Rest2, List1),
newResolvents(Rest1, [Clause2], List2),
newResolvents(Rest1, Rest2, List3),
unionWithSubsElim(List1, List2, NewList1),
unionWithSubsElim(NewList1, List3, NewList).
% resolvent(++Clause1, ++Clause2, ++PositiveLiteral, -Resolvent) function
resolvent(Clause1, Clause2, Literal, Resolvent) :-
s_remove(Literal, Clause1, TempClause1),
s_remove(not Literal, Clause2, TempClause2),
s_union(TempClause1, TempClause2, ResultClause),
tautologyReduction(ResultClause, Resolvent).
/*
****************************************************************************
RESOLUTION
****************************************************************************
*/
% tautology(++Formula) test.
% Can be used as a unary prefix operator.
tautology(Formula) :-
cnf([[not Formula]], AntiChain),
pureLiteralElim(AntiChain, NewAntiChain),
refuted(NewAntiChain).
% satisfiable(++Formula) test.
% Can be used as a unary prefix operator.
satisfiable(Formula) :-
\+ tautology(not Formula).
% consequence(++ListOfFormulas, ++Formula) test.
% Tests if Formula is logical consequence of ListOfFormulas.
% Can be used as a binary infix operator.
consequence(ListOfFormulas, Formula) :-
makeConjunction(ListOfFormulas, Conjunction),
tautology(Conjunction imp Formula).
/*
****************************************************************************
DEMOS
****************************************************************************
*/
demo :-
nl, nl,
write(' PROPOSITIONAL THEOREM PROVER '),nl,
write(' Jan A. Plaza '),nl,
write('This theorem prover is based on J.A. Robinson''s resolution method' ),nl,
write('augmented with pure literal elimination and subsumption elimination'),nl,
write('For any propositional formula F and list of formulas L, the tests: '),nl,
write(' |?- tautology F. '),nl,
write(' |?- satisfiable F. '),nl,
write(' |?- L consequence F. '),nl,
write('always terminate with an answer yes/no. '),nl,
write('You can also print a Conjunctive Normal Form: '),nl,
write(' |?- cnf F. '),nl,
write('The formula F can be built using propositional connectives: '),nl,
write(' not (negation) '),nl,
write(' and (conjunction) '),nl,
write(' or (inclusive discjunction) '),nl,
write(' imp (implication) '),nl,
write(' rimp (reversed implication) '),nl,
write(' equ (equivalence, biconditional) '),nl,
write(' xor (exclusive disjunction, not(p equ q))'),nl,
write(' nand (not(p and q)) - Sheffer''s stroke '),nl,
write(' nor (not(p or q)) '),nl,
write(' nimp (not(p imp q)) '),nl,
write(' nrimp (not(p rimp q)) '),nl,
write(' minus (p and not q) - the same as nimp '),nl,
write('truth constants: true, false, '),nl,
write('and propositional symbols. As propositional symbol use '),nl,
write('identifiers starting with a lower-case letter. '),nl,
% write('To run this demo once again type: demo.'),
nl.
demo2 :-
nl, nl,
write('Verifying the four Tarski-Bernays-Wajsberg axioms:'), nl,
write('| ?- tautology (p imp q) imp ((q imp r) imp (p imp r)).'), nl,
(tautology( (p imp q) imp ((q imp r) imp (p imp r)) )
-> write(yes) ; write(no) ), nl,
write('| ?- tautology p imp (q imp p).'), nl,
(tautology( p imp (q imp p) )
-> write(yes) ; write(no) ), nl,
write('| ?- tautology ((p imp q) imp p) imp p.'),
write(' % Peirce Law'),nl,
(tautology( ((p imp q) imp p) imp p )
-> write(yes) ; write(no) ), nl,
write('| ?- tautology false imp p.'), nl,
(tautology( false imp p )
-> write(yes) ; write(no) ), nl,
nl,
write('| ?- tautology (p imp q) imp (q imp p).'), write(' % False'), nl,
(tautology( (p imp q) imp (q imp p) )
-> write(yes) ; write(no) ), nl,
write('| ?- tautology (p imp q) and p and not q.'), write(' % False'), nl,
(tautology( (p imp q) and p and not q )
-> write(yes) ; write(no) ), nl,
write('| ?- tautology (p equ q) or (p equ r) or (q equ r).'),
write(' % True'), nl,
(tautology( (p equ q) or (p equ r) or (q equ r) )
-> write(yes) ; write(no) ), nl,
% write('To run this demo once again type: demo2'),
nl.
demo3 :-
nl, nl,
write('| ?- satisfiable (p imp q) imp (q imp p).'), write(' % True'), nl,
(satisfiable( (p imp q) imp (q imp p) )
-> write(yes) ; write(no) ), nl,
write('| ?- satisfiable (p imp q) and p and not q.'),
write(' % False'), nl,
(satisfiable( (p imp q) and p and not q )
-> write(yes) ; write(no) ), nl,
write('| ?- satisfiable (p equ q) or (p equ r) or (q equ r).'),
write(' % True'), nl,
(satisfiable( (p equ q) or (p equ r) or (q equ r) )
-> write(yes) ; write(no) ), nl,
% write('To run this demo once again type: demo3'),
nl.
demo4 :-
nl, nl,
write('| ?- [p imp q, q imp r, r imp p] consequence q imp p.'), nl,
(consequence( [p imp q, q imp r, r imp p], q imp p )
-> write(yes) ; write(no) ), nl,
write('| ?- [p imp q, q imp r] consequence r imp p.'), nl,
(consequence( [p imp q, q imp r], r imp p )
-> write(yes) ; write(no) ), nl.
demo5 :-
nl, nl,
write('| ?- cnf p and q and r.'), nl,
cnf( p and q and r ), nl,
write('| ?- cnf p or q or r.'), nl,
cnf( p or q or r ), nl,
write('| ?- cnf p xor q xor r.'), nl,
cnf( p xor q xor r ), nl,
write('| ?- cnf true equ false.'), nl,
cnf( true equ false ), nl,
write('| ?- cnf (p imp q) or (q imp p).'), nl,
cnf( (p imp q) or (q imp p) ), nl,
write('| ?- cnf not ((p imp q) or (q imp p)).'), nl,
cnf( not((p imp q) or (q imp p)) ), nl,
% write('To run this demo once again type: demo4'),
nl, nl.
:- initialization(demo).
:- initialization(demo2).
:- initialization(demo3).
:- initialization(demo4).
:- initialization(demo5).
/*
****************************************************************************
****************************************************************************
*/