diff --git a/Project.toml b/Project.toml index aad8813..35be9d2 100644 --- a/Project.toml +++ b/Project.toml @@ -2,7 +2,7 @@ name = "Plasmo" uuid = "d3f7391f-f14a-50cc-bbe4-76a32d1bad3c" authors = ["Jordan Jalving "] repo = "https://github.com/plasmo-dev/Plasmo.jl.git" -version = "0.6.3" +version = "0.6.4" [deps] DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" diff --git a/README.md b/README.md index 2400fb7..124be5c 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,8 @@ [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://plasmo-dev.github.io/Plasmo.jl/dev/) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://plasmo-dev.github.io/Plasmo.jl/stable/) [![DOI](https://zenodo.org/badge/96967382.svg)](https://zenodo.org/badge/latestdoi/96967382) +[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) + # Plasmo.jl diff --git a/src/Plasmo.jl b/src/Plasmo.jl index cd875d1..ee624f3 100644 --- a/src/Plasmo.jl +++ b/src/Plasmo.jl @@ -29,6 +29,7 @@ export OptiGraph, OptiNode, OptiEdge, NodeVariableRef, + EdgeConstraintRef, direct_moi_graph, graph_backend, graph_index, @@ -108,7 +109,10 @@ export OptiGraph, # other functions - set_jump_model + set_jump_model, + extract_variables, + is_separable, + extract_separable_terms include("core_types.jl") @@ -138,6 +142,8 @@ include("graph_functions/topology.jl") include("graph_functions/partition.jl") +include("utils.jl") + # extensions function __init__() @require KaHyPar = "2a6221f6-aa48-11e9-3542-2d9e0ef01880" include( diff --git a/src/backends/moi_backend.jl b/src/backends/moi_backend.jl index f4ca62c..260ac3e 100644 --- a/src/backends/moi_backend.jl +++ b/src/backends/moi_backend.jl @@ -269,11 +269,13 @@ function _add_edge(backend::GraphMOIBackend, edge::OptiEdge) return nothing end -# # MOI Methods -# -### graph attributes +## graph attributes + +function MOI.supports(backend::GraphMOIBackend, attr::MOI.AnyAttribute, args...) + return MOI.supports(JuMP.backend(backend), attr, args...) +end function MOI.get( backend::GraphMOIBackend, attr::AT @@ -528,22 +530,54 @@ end # MOI variables and constraints # -function MOI.add_variable(graph_backend::GraphMOIBackend, vref::NodeVariableRef) +function MOI.add_variable(backend::GraphMOIBackend, vref::NodeVariableRef) # return if variable already exists in backend - vref in keys(graph_backend.element_to_graph_map.var_map) && return nothing + vref in keys(backend.element_to_graph_map.var_map) && return nothing # add the variable - graph_var_index = MOI.add_variable(graph_backend.moi_backend) + graph_var_index = MOI.add_variable(backend.moi_backend) + + # map reference to index + backend.element_to_graph_map[vref] = graph_var_index + backend.graph_to_element_map[graph_var_index] = vref + + # create key for node if necessary + if !haskey(backend.node_variables, vref.node) + backend.node_variables[vref.node] = MOI.VariableIndex[] + end + push!(backend.node_variables[vref.node], graph_var_index) + return graph_var_index +end + +function MOI.add_constrained_variable( + backend::GraphMOIBackend, + vref::NodeVariableRef, + cref::NodeConstraintRef, + set::MOI.AbstractScalarSet, +) + # return if variable already exists in backend + vref in keys(backend.element_to_graph_map.var_map) && return nothing + + # add the variable and parameter constraint + graph_var_index, graph_con_index = MOI.add_constrained_variable( + backend.moi_backend, set + ) # map reference to index - graph_backend.element_to_graph_map[vref] = graph_var_index - graph_backend.graph_to_element_map[graph_var_index] = vref + backend.element_to_graph_map[vref] = graph_var_index + backend.graph_to_element_map[graph_var_index] = vref + backend.element_to_graph_map[cref] = graph_con_index + backend.graph_to_element_map[graph_con_index] = cref # create key for node if necessary - if !haskey(graph_backend.node_variables, vref.node) - graph_backend.node_variables[vref.node] = MOI.VariableIndex[] + if !haskey(backend.node_variables, vref.node) + backend.node_variables[vref.node] = MOI.VariableIndex[] + end + if !haskey(backend.element_constraints, vref.node) + graph_backend.element_constraints[vref.node] = MOI.ConstraintIndex[] end - push!(graph_backend.node_variables[vref.node], graph_var_index) + push!(backend.node_variables[vref.node], graph_var_index) + push!(backend.element_constraints[vref.node], graph_con_index) return graph_var_index end @@ -879,6 +913,7 @@ function _copy_node_variables( # map existing variables in the index_map # existing variables may come from linking constraints added between graphs + # TODO: could be slow... existing_vars = intersect(node_variables, keys(dest.element_to_graph_map.var_map)) for var in existing_vars src_graph_index = graph_index(var) diff --git a/src/core_types.jl b/src/core_types.jl index 19bd4cf..5398583 100644 --- a/src/core_types.jl +++ b/src/core_types.jl @@ -69,8 +69,6 @@ struct ElementData{GT<:AbstractOptiGraph} # track constraint indices last_constraint_index::OrderedDict{OptiElement,Int} end - -# default is OptiGraph function ElementData(GT::Type{<:AbstractOptiGraph}) return ElementData{GT}( OrderedDict{OptiNode{GT},Vector{GT}}(), diff --git a/src/node_variables.jl b/src/node_variables.jl index 4ff88a7..393d8b0 100644 --- a/src/node_variables.jl +++ b/src/node_variables.jl @@ -3,7 +3,7 @@ # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at https://mozilla.org/MPL/2.0/. -# TODO: parameterize on precision +# TODO: parameterize variables on precision struct NodeVariableRef <: JuMP.AbstractVariableRef node::OptiNode @@ -70,23 +70,20 @@ function MOI.delete(node::OptiNode, vref::NodeVariableRef) return nothing end +# add variable + """ JuMP.add_variable(node::OptiNode, v::JuMP.AbstractVariable, name::String="") Add variable `v` to optinode `node`. This function supports use of the `@variable` JuMP macro. Optionally add a `base_name` to the variable for printing. """ -function JuMP.add_variable(node::OptiNode, v::JuMP.AbstractVariable, name::String="") - vref = _moi_add_node_variable(node, v) - if !isempty(name) && MOI.supports( - JuMP.backend(graph_backend(node)), MOI.VariableName(), MOI.VariableIndex - ) - JuMP.set_name(vref, "$(JuMP.name(node))[:$(name)]") - end - return vref +function JuMP.add_variable(node::OptiNode, v::JuMP.ScalarVariable, name::String="") + nvref = _moi_add_node_variable(node, v, name) + return nvref end -function _moi_add_node_variable(node::OptiNode, v::JuMP.AbstractVariable) +function _moi_add_node_variable(node::OptiNode, v::JuMP.ScalarVariable, name::String) # get a new variable index and create a reference variable_index = next_variable_index(node) nvref = NodeVariableRef(node, variable_index) @@ -98,6 +95,11 @@ function _moi_add_node_variable(node::OptiNode, v::JuMP.AbstractVariable) # constrain node variable (hits all graph backends) _moi_constrain_node_variable(nvref, v.info, Float64) + + if !isempty(name) && + MOI.supports(JuMP.backend(node), MOI.VariableName(), MOI.VariableIndex) + JuMP.set_name(nvref, "$(JuMP.name(node))[:$(name)]") + end return nvref end @@ -128,6 +130,64 @@ function _moi_constrain_node_variable(nvref::NodeVariableRef, info, ::Type{T}) w end end +# add variable constrained on creation + +function JuMP.add_variable( + node::OptiNode, variable::VariableConstrainedOnCreation, name::String +) + nvref = _moi_add_constrained_node_variable( + node, variable.scalar_variable, variable.set, name, Float64 + ) + return nvref +end + +function JuMP.add_variable( + node::OptiNode, + variables::AbstractArray{<:VariableConstrainedOnCreation}, + names::AbstractArray{<:String}, +) + return JuMP.add_variable.(node, variables, names) +end + +function JuMP.add_variable( + node::OptiNode, variables::AbstractArray{<:VariableConstrainedOnCreation}, name::String +) + return JuMP.add_variable.(node, variables, Ref(name)) +end + +function _moi_add_constrained_node_variable( + node::OptiNode, + scalar_variable::ScalarVariable, + set::MOI.AbstractScalarSet, + name::String, + ::Type{T}, +) where {T} + # get a new variable index and create a reference + variable_index = next_variable_index(node) + nvref = NodeVariableRef(node, variable_index) + + # get a new constraint index and create a reference + constraint_index = next_constraint_index( + node, MOI.VariableIndex, typeof(set) + )::MOI.ConstraintIndex{MOI.VariableIndex,typeof(set)} + cref = ConstraintRef(node, constraint_index, JuMP.ScalarShape()) + + # add variable to all containing optigraphs + for graph in containing_optigraphs(node) + MOI.add_constrained_variable(JuMP.backend(graph), nvref, cref, set) + end + + _moi_constrain_node_variable(nvref, scalar_variable.info, T) + + if !isempty(name) && + MOI.supports(JuMP.backend(node), MOI.VariableName(), MOI.VariableIndex) + JuMP.set_name(nvref, "$(JuMP.name(node))[:$(name)]") + end + return nvref +end + +# variable methods + function JuMP.delete(node::OptiNode, nvref::NodeVariableRef) if node !== JuMP.owner_model(nvref) error( @@ -167,7 +227,7 @@ function JuMP.index(vref::NodeVariableRef) return vref.index end -### variable values +# variable primal values function JuMP.value(nvref::NodeVariableRef; result::Int=1) return MOI.get(graph_backend(nvref.node), MOI.VariablePrimal(result), nvref) @@ -177,7 +237,46 @@ function JuMP.value(var_value::Function, vref::NodeVariableRef) return var_value(vref) end -### variable start values +# parameters + +function JuMP.ParameterRef(nvref::NodeVariableRef) + if !JuMP.is_parameter(nvref) + error("Variable $x is not a parameter.") + end + backend = JuMP.backend(nvref.node) + ci = _parameter_index(nvref) + cref = JuMP.constraint_ref_with_index(backend, ci) + return cref +end + +function JuMP.is_parameter(nvref::NodeVariableRef) + return MOI.is_valid( + JuMP.backend(JuMP.owner_model(nvref)), _parameter_index(nvref) + )::Bool +end + +function JuMP.parameter_value(nvref::NodeVariableRef) + set = MOI.get( + JuMP.owner_model(nvref), MOI.ConstraintSet(), ParameterRef(nvref) + )::MOI.Parameter{JuMP.value_type(typeof(nvref))} + return set.value +end + +function JuMP.set_parameter_value(nvref::NodeVariableRef, value) + node = JuMP.owner_model(nvref) + T = JuMP.value_type(typeof(nvref)) + _set_dirty(node) + set = MOI.Parameter{T}(convert(T, value)) + MOI.set(node, MOI.ConstraintSet(), ParameterRef(nvref), set) + return nothing +end + +function _parameter_index(nvref::NodeVariableRef) + F, S = MOI.VariableIndex, MOI.Parameter{JuMP.value_type(typeof(nvref))} + return MOI.ConstraintIndex{F,S}(graph_index(nvref).value) +end + +# variable start values function JuMP.start_value(nvref::NodeVariableRef) return MOI.get(graph_backend(nvref.node), MOI.VariablePrimalStart(), nvref) @@ -192,7 +291,14 @@ function JuMP.set_start_value(nvref::NodeVariableRef, value::Union{Nothing,Real} ) end -### node variable bounds +# variable bounds - lower bound + +function JuMP.LowerBoundRef(nvref::NodeVariableRef) + if !JuMP.has_lower_bound(nvref) + error("Variable $(nvref) does not have a lower bound.") + end + return _nv_lower_bound_ref(nvref) +end function JuMP.has_lower_bound(nvref::NodeVariableRef) return _moi_nv_has_lower_bound(nvref) @@ -220,13 +326,6 @@ function JuMP.delete_lower_bound(nvref::NodeVariableRef) return nothing end -function JuMP.LowerBoundRef(nvref::NodeVariableRef) - if !JuMP.has_lower_bound(nvref) - error("Variable $(nvref) does not have a lower bound.") - end - return _nv_lower_bound_ref(nvref) -end - function _moi_nv_has_lower_bound(nvref::NodeVariableRef) backend = graph_backend(nvref.node) ci = MOI.ConstraintIndex{MOI.VariableIndex,MOI.GreaterThan{Float64}}( @@ -258,6 +357,15 @@ function _moi_nv_set_lower_bound(nvref::NodeVariableRef, lower::Number) return nothing end +# variable bounds - upper bound + +function JuMP.UpperBoundRef(nvref::NodeVariableRef) + if !JuMP.has_upper_bound(nvref) + error("Variable $(nvref) does not have an upper bound.") + end + return _nv_upper_bound_ref(nvref) +end + function JuMP.has_upper_bound(nvref::NodeVariableRef) return _moi_nv_has_upper_bound(nvref) end @@ -284,13 +392,6 @@ function JuMP.delete_upper_bound(nvref::NodeVariableRef) return nothing end -function JuMP.UpperBoundRef(nvref::NodeVariableRef) - if !JuMP.has_upper_bound(nvref) - error("Variable $(nvref) does not have an upper bound.") - end - return _nv_upper_bound_ref(nvref) -end - function _moi_nv_has_upper_bound(nvref::NodeVariableRef) backend = graph_backend(nvref.node) ci = MOI.ConstraintIndex{MOI.VariableIndex,MOI.LessThan{Float64}}( @@ -322,7 +423,7 @@ function _moi_nv_set_upper_bound(nvref::NodeVariableRef, upper::Number) return nothing end -### fix/unfix variable +# fix/unfix variable function JuMP.FixRef(nvref::NodeVariableRef) if !JuMP.is_fixed(nvref) @@ -404,7 +505,7 @@ function JuMP.unfix(nvref::NodeVariableRef) return nothing end -### node variable integer +# variable integer function JuMP.IntegerRef(nvref::NodeVariableRef) if !JuMP.is_integer(nvref) @@ -460,7 +561,7 @@ function JuMP.unset_integer(nvref::NodeVariableRef) return nothing end -### node variable binary +# variable binary function JuMP.BinaryRef(nvref::NodeVariableRef) if !JuMP.is_binary(nvref) @@ -516,7 +617,9 @@ function JuMP.unset_binary(nvref::NodeVariableRef) return nothing end -# Extended from https://github.com/jump-dev/JuMP.jl/blob/301d46e81cb66c74c6e22cd89fb89ced740f157b/src/variables.jl#L2721 +# normalized coefficient + +## Extended from https://github.com/jump-dev/JuMP.jl/blob/301d46e81cb66c74c6e22cd89fb89ced740f157b/src/variables.jl#L2721 function JuMP.set_normalized_coefficient( con_ref::S, variable::NodeVariableRef, value::Number ) where {S<:Union{NodeConstraintRef,EdgeConstraintRef}} @@ -647,39 +750,3 @@ function JuMP.set_normalized_coefficient( graph.is_model_dirty = true return nothing end - -### Utilities for querying variables used in constraints - -function _extract_variables(func::NodeVariableRef) - return [func] -end - -function _extract_variables(ref::ConstraintRef) - func = JuMP.jump_function(JuMP.constraint_object(ref)) - return _extract_variables(func) -end - -function _extract_variables(func::JuMP.GenericAffExpr) - return collect(keys(func.terms)) -end - -function _extract_variables(func::JuMP.GenericQuadExpr) - quad_vars = vcat([[term[2]; term[3]] for term in JuMP.quad_terms(func)]...) - aff_vars = _extract_variables(func.aff) - return union(quad_vars, aff_vars) -end - -function _extract_variables(func::JuMP.GenericNonlinearExpr) - vars = NodeVariableRef[] - for i in 1:length(func.args) - func_arg = func.args[i] - if func_arg isa Number - continue - elseif typeof(func_arg) == NodeVariableRef - push!(vars, func_arg) - else - append!(vars, _extract_variables(func_arg)) - end - end - return vars -end diff --git a/src/optiedge.jl b/src/optiedge.jl index 2bed1d9..518875b 100644 --- a/src/optiedge.jl +++ b/src/optiedge.jl @@ -11,13 +11,13 @@ Base.show(io::IO, edge::OptiEdge) = Base.print(io, edge) function Base.setindex!(edge::OptiEdge, value::Any, name::Symbol) t = (edge, name) - source_graph(edge).edge_obj_dict[t] = value + source_graph(edge).element_data.edge_obj_dict[t] = value return nothing end function Base.getindex(edge::OptiEdge, name::Symbol) t = (edge, name) - return edge.source_graph.edge_obj_dict[t] + return source_graph(edge).element_data.edge_obj_dict[t] end """ @@ -72,7 +72,7 @@ end function JuMP.all_variables(edge::OptiEdge) con_refs = JuMP.all_constraints(edge) - vars = vcat(_extract_variables.(con_refs)...) + vars = vcat(extract_variables.(con_refs)...) return unique(vars) end @@ -134,6 +134,10 @@ function JuMP.is_valid(edge::OptiEdge, cref::ConstraintRef) return edge === JuMP.owner_model(cref) && MOI.is_valid(graph_backend(edge), cref) end +function get_edge(cref::EdgeConstraintRef) + return JuMP.owner_model(cref) +end + """ JuMP.dual(cref::EdgeConstraintRef; result::Int=1) diff --git a/src/optigraph.jl b/src/optigraph.jl index 742f928..5867d99 100644 --- a/src/optigraph.jl +++ b/src/optigraph.jl @@ -90,9 +90,7 @@ Base.broadcastable(graph::OptiGraph) = Ref(graph) # TODO: parameterize on numerical precision like JuMP Models do JuMP.value_type(::Type{OptiGraph}) = Float64 -# -# Optigraph methods -# +# optigraph methods """ graph_backend(graph::OptiGraph) @@ -105,7 +103,7 @@ function graph_backend(graph::OptiGraph) return graph.backend end -### Graph Index +# graph index """ graph_index(ref::RT) where {RT<:Union{NodeVariableRef,ConstraintRef}} @@ -121,7 +119,7 @@ function graph_index( return graph_index(graph_backend(graph), ref) end -### Assemble OptiGraph +# assemble optiGraph function _assemble_optigraph(nodes::Vector{<:OptiNode}, edges::Vector{<:OptiEdge}) graph = OptiGraph() @@ -171,7 +169,7 @@ function is_valid_optigraph(nodes::Vector{<:OptiNode}, edges::Vector{<:OptiEdge} return isempty(setdiff(edge_nodes, nodes)) ? true : false end -### Manage OptiNodes +# manage optinodes """ add_node( @@ -199,7 +197,7 @@ Add an existing optinode (created in another optigraph) to `graph`. This copies from the other graph to the new graph. """ function add_node(graph::OptiGraph, node::OptiNode) - node in all_nodes(graph) && error("Node already exists within graph") + # node in all_nodes(graph) && error("Node already exists within graph") push!(graph.optinodes, node) add_node(graph_backend(graph), node) _track_node_in_graph(graph, node) @@ -232,7 +230,7 @@ end Retrieve the optinodes contained in a JuMP expression. """ function collect_nodes(jump_func::T where {T<:JuMP.AbstractJuMPScalar}) - vars = _extract_variables(jump_func) + vars = extract_variables(jump_func) nodes = JuMP.owner_model.(vars) return collect(nodes) end @@ -284,7 +282,7 @@ function num_nodes(graph::OptiGraph) return n_nodes end -### Manage OptiEdges +# manage optiEdges """ add_edge( @@ -319,7 +317,7 @@ Add an existing optiedge (created in another optigraph) to `graph`. This copies from the other graph to the new graph. """ function add_edge(graph::OptiGraph, edge::OptiEdge) - edge in all_edges(graph) && error("Cannot add the same edge to a graph multiple times") + # edge in all_edges(graph) && error("Cannot add the same edge to a graph multiple times") push!(graph.optiedges, edge) add_edge(graph_backend(graph), edge) _track_edge_in_graph(graph, edge) @@ -460,7 +458,7 @@ function all_elements(graph::OptiGraph) return [all_nodes(graph); all_edges(graph)] end -### Manage subgraphs +# manage subgraphs """ add_subgraph(graph::OptiGraph; name::Symbol=Symbol(:sg,gensym())) @@ -549,7 +547,7 @@ function num_subgraphs(graph::OptiGraph) return n_subs end -### Link Constraints +# link constraints """ num_local_link_constraints( @@ -664,7 +662,7 @@ function all_link_constraints(graph::OptiGraph) return vcat(all_constraints.(all_edges(graph))...) end -### Local Constraints +# local constraints """ num_local_constraints( @@ -732,13 +730,7 @@ function local_constraints(graph::OptiGraph) return vcat(all_constraints.(local_elements(graph))...) end -# TODO Methods -# num_linked_variables(graph) -# linked_variables(graph) - -# -# MOI Methods -# +# MOI methods function MOI.get( graph::OptiGraph, attr::AT @@ -752,9 +744,7 @@ function MOI.set( return MOI.set(graph_backend(graph), attr, args...) end -# -# JuMP Methods -# +# JuMP methods """ JuMP.name(graph::OptiGraph) @@ -775,7 +765,7 @@ function JuMP.set_name(graph::OptiGraph, name::Symbol) return nothing end -### Variables +# variable methods """ JuMP.all_variables(graph::OptiGraph) @@ -896,7 +886,7 @@ function JuMP.dual(graph::OptiGraph, cref::EdgeConstraintRef; result::Int=1) return MOI.get(graph_backend(graph), MOI.ConstraintDual(result), cref) end -### Constraints +# constraint methods """ JuMP.add_constraint(graph::OptiGraph, con::JuMP.AbstractConstraint, name::String="") @@ -1003,7 +993,7 @@ function JuMP.num_constraints(graph::OptiGraph; count_variable_in_set_constraint return num_cons end -### Other Methods +# other methods """ JuMP.backend(graph::OptiGraph) @@ -1039,7 +1029,7 @@ function JuMP.relax_integrality(graph::OptiGraph) return unrelax end -### Nonlinear Operators +# nonlinear operators """ JuMP.add_nonlinear_operator( @@ -1075,7 +1065,7 @@ function JuMP.add_nonlinear_operator( return JuMP.NonlinearOperator(f, registered_name) end -### Objective function +# objective function """ has_node_objective(graph::OptiGraph) @@ -1091,24 +1081,83 @@ function has_node_objective(graph::OptiGraph) return false end +""" + node_objective_type(graph::OptiGraph) + +Return the most complex objective type among nodes in the given `graph`. The order of +complexity is: Nonlinear, Quadratic, Linear. +""" +function node_objective_type(graph::OptiGraph) + if !(has_node_objective(graph)) + return nothing + end + + obj_types = JuMP.objective_function_type.(all_nodes(graph)) + if JuMP.GenericNonlinearExpr{NodeVariableRef} in obj_types + return JuMP.GenericNonlinearExpr{NodeVariableRef} + elseif JuMP.GenericQuadExpr{Float64,NodeVariableRef} in obj_types + return JuMP.GenericQuadExpr{Float64,NodeVariableRef} + elseif JuMP.GenericAffExpr{Float64,NodeVariableRef} in obj_types + return JuMP.GenericAffExpr{Float64,NodeVariableRef} + elseif NodeVariableRef in obj_types + return JuMP.GenericAffExpr{Float64,NodeVariableRef} + else + error("Could not determine node objective type") + end +end + """ set_to_node_objectives(graph::OptiGraph) Set the `graph` objective to the summation of all of its optinode objectives. Assumes the -objective sense is an MOI.MIN_SENSE and adjusts the signs of node objective functions -accordingly. +objective sense is an MOI.MIN_SENSE and accounts for the sense of node objectives +accordingly. + +Note that building nonlinear objective functions is much slower than +linear or quadratic because nonlienar expressions cannot be updated in place. """ function set_to_node_objectives(graph::OptiGraph) - obj = 0 + if has_node_objective(graph) + node_obj_type = node_objective_type(graph) + _set_to_node_objectives(graph, node_obj_type) + end + return nothing +end + +function _set_to_node_objectives( + graph::OptiGraph, + obj_type::Type{ + T + } where { + T<:Union{ + JuMP.GenericAffExpr{Float64,NodeVariableRef}, + JuMP.GenericQuadExpr{Float64,NodeVariableRef}, + }, + }, +) + objective = zero(obj_type) for node in all_nodes(graph) if has_objective(node) sense = JuMP.objective_sense(node) == MOI.MAX_SENSE ? -1 : 1 - obj += sense * JuMP.objective_function(node) + JuMP.add_to_expression!(objective, JuMP.objective_function(node), sense) end end - if obj != 0 - @objective(graph, Min, obj) + @objective(graph, Min, objective) + return nothing +end + +function _set_to_node_objectives( + graph::OptiGraph, + obj_type::Type{T} where {T<:JuMP.GenericNonlinearExpr{NodeVariableRef}}, +) + objective = zero(obj_type) + for node in all_nodes(graph) + if has_objective(node) + sense = JuMP.objective_sense(node) == MOI.MAX_SENSE ? -1 : 1 + objective += *(sense, objective_function(node)) + end end + @objective(graph, Min, objective) return nothing end @@ -1235,7 +1284,7 @@ function _moi_set_objective_function(graph::OptiGraph, expr::JuMP.AbstractJuMPSc return nothing end -### objective coefficient - linear +# objective coefficient - linear """ JuMP.set_objective_coefficient( @@ -1282,7 +1331,7 @@ function _set_objective_coefficient( return nothing end -### objective coefficient - linear - vector +# objective coefficient - linear - vector function JuMP.set_objective_coefficient( graph::OptiGraph, @@ -1330,7 +1379,7 @@ function _set_objective_coefficient( return nothing end -### objective coefficient - quadratic +# objective coefficient - quadratic function JuMP.set_objective_coefficient( graph::OptiGraph, variable_1::NodeVariableRef, variable_2::NodeVariableRef, coeff::Real @@ -1356,7 +1405,7 @@ function _set_objective_coefficient( return nothing end -# if existing objective is quadratic +## if existing objective is quadratic function _set_objective_coefficient( graph::OptiGraph, variable_1::NodeVariableRef, @@ -1377,7 +1426,7 @@ function _set_objective_coefficient( return nothing end -### objective coefficient - quadratic - vector +# objective coefficient - quadratic - vector function JuMP.set_objective_coefficient( graph::OptiGraph, @@ -1397,7 +1446,7 @@ function JuMP.set_objective_coefficient( return nothing end -# if existing objective is not quadratic +## if existing objective is not quadratic function _set_objective_coefficient( graph::OptiGraph, variables_1::AbstractVector{<:NodeVariableRef}, @@ -1414,7 +1463,7 @@ function _set_objective_coefficient( return nothing end -# if existing objective is quadratic +## if existing objective is quadratic function _set_objective_coefficient( graph::OptiGraph, variables_1::AbstractVector{<:NodeVariableRef}, @@ -1440,3 +1489,25 @@ end function JuMP.unregister(graph::OptiGraph, key::Symbol) return delete!(object_dictionary(graph), key) end + +# TODO Methods +# num_linked_variables(graph) +# linked_variables(graph) + +# TODO +""" + set_node_objectives_from_graph(graph::OptiGraph) + +Set the objective of each node within `graph` by parsing and separating the graph objective +function. Note this only works if the objective function is separable over the nodes in +`graph`. +""" +# function set_node_objectives_from_graph(graph::OptiGraph) +# obj = objective_function(graph) +# if !(is_separable(obj)) +# error("Cannot set node objectives from graph. It is not separable across nodes.") +# end +# sense = objective_sense(graph) +# _set_node_objectives_from_graph(obj, sense) +# return nothing +# end diff --git a/src/optimizer_interface.jl b/src/optimizer_interface.jl index 346cc2f..ee8d493 100644 --- a/src/optimizer_interface.jl +++ b/src/optimizer_interface.jl @@ -117,7 +117,7 @@ function JuMP.set_optimizer( ) JuMP.error_if_direct_mode(JuMP.backend(graph), :set_optimizer) if add_bridges - optimizer = MOI.instantiate(optimizer_constructor)#; with_bridge_type = T) + optimizer = MOI.instantiate(optimizer_constructor; with_bridge_type=Float64) for BT in graph.bridge_types _moi_call_bridge_function(MOI.Bridges.add_bridge, optimizer, BT) end diff --git a/src/optinode.jl b/src/optinode.jl index dde6fa5..6e783f7 100644 --- a/src/optinode.jl +++ b/src/optinode.jl @@ -202,7 +202,7 @@ function _check_node_variables( NodeVariableRef,JuMP.GenericAffExpr,JuMP.GenericQuadExpr,JuMP.GenericNonlinearExpr }, ) - extract_vars = _extract_variables(jump_func) + extract_vars = extract_variables(jump_func) for var in extract_vars if var.node != node error("Variable $var does not belong to node $node") @@ -241,7 +241,15 @@ function JuMP.set_objective_sense(node::OptiNode, sense::MOI.OptimizationSense) end function JuMP.objective_function(node::OptiNode) - return JuMP.object_dictionary(node)[(node, :objective_function)] + if haskey(JuMP.object_dictionary(node), (node, :objective_function)) + return JuMP.object_dictionary(node)[(node, :objective_function)] + else + return nothing + end +end + +function JuMP.objective_function_type(node::OptiNode) + return typeof(objective_function(node)) end function JuMP.objective_sense(node::OptiNode) diff --git a/src/utils.jl b/src/utils.jl new file mode 100644 index 0000000..22dd15d --- /dev/null +++ b/src/utils.jl @@ -0,0 +1,225 @@ +""" + extract_variables(func) + +Return the variables contained within the given expression or reference. +""" +function extract_variables(func) + return _extract_variables(func) +end + +function _extract_variables(func::NodeVariableRef) + return [func] +end + +function _extract_variables(ref::EdgeConstraintRef) + func = JuMP.jump_function(JuMP.constraint_object(ref)) + return _extract_variables(func) +end + +function _extract_variables(func::JuMP.GenericAffExpr) + return collect(keys(func.terms)) +end + +function _extract_variables(func::JuMP.GenericQuadExpr) + quad_vars = vcat([[term[2]; term[3]] for term in JuMP.quad_terms(func)]...) + aff_vars = _extract_variables(func.aff) + return union(quad_vars, aff_vars) +end + +function _extract_variables(func::JuMP.GenericNonlinearExpr) + vars = NodeVariableRef[] + for i in 1:length(func.args) + func_arg = func.args[i] + if func_arg isa Number + continue + elseif typeof(func_arg) == NodeVariableRef + push!(vars, func_arg) + else + append!(vars, _extract_variables(func_arg)) + end + end + return vars +end + +function _first_variable(func::JuMP.GenericNonlinearExpr) + for i in 1:length(func.args) + func_arg = func.args[i] + if func_arg isa Number + continue + elseif typeof(func_arg) == NodeVariableRef + return func_arg + else + return _first_variable(func_arg) + end + end +end + +""" + is_separable(func) + +Return whether the given function is separable across optinodes. +""" +function is_separable(func::Union{Number,JuMP.AbstractJuMPScalar}) + return _is_separable(func) +end + +function _is_separable(::Number) + return true +end + +function _is_separable(::NodeVariableRef) + return true +end + +function _is_separable(::JuMP.GenericAffExpr{<:Number,NodeVariableRef}) + return true +end + +function _is_separable(func::JuMP.GenericQuadExpr{<:Number,NodeVariableRef}) + # check each term; make sure they are all on the same subproblem + for term in Plasmo.quad_terms(func) + # term = (coefficient, variable_1, variable_2) + node1 = get_node(term[2]) + node2 = get_node(term[3]) + + # if any term is split across nodes, the objective is not separable + if node1 != node2 + return false + end + end + return true +end + +function _is_separable(func::JuMP.GenericNonlinearExpr{NodeVariableRef}) + # check for a constant multiplier + if func.head == :* + if !(func.args[1] isa Number) + return false + end + end + + # if not additive, check if term is separable + if func.head != :+ && func.head != :- + vars = extract_variables(func) + nodes = get_node.(vars) + if length(unique(nodes)) > 1 + return false + end + end + + # check each argument + for arg in func.args + if !(is_separable(arg)) + return false + end + end + return true +end + +""" + extract_separable_terms(func::JuMP.AbstractJuMPScalar,graph::OptiGraph) + +Extract the separable terms contained within `graph`. +NOTE: Nonlinear objectives are not completely tested and may return incorrect results. +""" +function extract_separable_terms(func::JuMP.AbstractJuMPScalar, graph::OptiGraph) + !is_separable(func) && error("Cannont extract terms. Function is not separable.") + return _extract_separable_terms(func, graph) +end + +function _extract_separable_terms( + func::Union{Number,Plasmo.NodeVariableRef}, graph::OptiGraph +) + return func +end + +function _extract_separable_terms( + func::JuMP.GenericAffExpr{<:Number,NodeVariableRef}, graph::OptiGraph +) + node_terms = OrderedDict{ + OptiNode,Vector{JuMP.GenericAffExpr{<:Number,NodeVariableRef}} + }() + nodes = Plasmo.collect_nodes(func) + nodes = intersect(nodes, all_nodes(graph)) + for node in nodes + node_terms[node] = Vector{JuMP.GenericAffExpr{<:Number,NodeVariableRef}}() + end + + for term in Plasmo.linear_terms(func) + node = get_node(term[2]) + push!(node_terms[node], term[1] * term[2]) + end + + return node_terms +end + +function _extract_separable_terms( + func::JuMP.GenericQuadExpr{<:Number,NodeVariableRef}, graph::OptiGraph +) + node_terms = OrderedDict{ + OptiNode,Vector{JuMP.GenericQuadExpr{<:Number,NodeVariableRef}} + }() + nodes = collect_nodes(func) + nodes = intersect(nodes, all_nodes(graph)) + for node in nodes + node_terms[node] = Vector{JuMP.GenericQuadExpr{<:Number,NodeVariableRef}}() + end + + for term in JuMP.quad_terms(func) + node = get_node(term[2]) + push!(node_terms[node], term[1] * term[2] * term[3]) + end + + for term in JuMP.linear_terms(func) + node = get_node(term[2]) + push!(node_terms[node], term[1] * term[2]) + end + + return node_terms +end + +# NOTE: method needs improvement. does not cover all separable cases. +function _extract_separable_terms( + func::JuMP.GenericNonlinearExpr{NodeVariableRef}, graph::OptiGraph +) + node_terms = OrderedDict{OptiNode,Vector{JuMP.GenericNonlinearExpr{NodeVariableRef}}}() + nodes = collect_nodes(func) + nodes = intersect(nodes, all_nodes(graph)) + for node in nodes + node_terms[node] = Vector{JuMP.GenericNonlinearExpr{NodeVariableRef}}() + end + + _extract_separable_terms(func, node_terms) + + return node_terms +end + +function _extract_separable_terms( + func::JuMP.GenericNonlinearExpr{NodeVariableRef}, + node_terms::OrderedDict{OptiNode,Vector{JuMP.GenericNonlinearExpr{NodeVariableRef}}}, +) + # check for a constant multiplier + multiplier = 1.0 + if func.head == :* + if func.args[1] isa Number + multiplier = func.args[1] + end + end + + # if not additive, get node for this term + if func.head != :+ && func.head != :- + var = _first_variable(func) + node = get_node(var) + push!(node_terms[node], multiplier * func) + else + # check each argument + for arg in func.args + if arg isa Number + continue + end + _extract_separable_terms(arg, node_terms) + end + end + + return nothing +end diff --git a/test/test_optigraph.jl b/test/test_optigraph.jl index 7eb4195..9f110c7 100644 --- a/test/test_optigraph.jl +++ b/test/test_optigraph.jl @@ -52,6 +52,30 @@ function test_simple_graph() @test MOIU.state(graph) == MOIU.ATTACHED_OPTIMIZER MOIU.drop_optimizer(graph) @test MOIU.state(graph) == MOIU.NO_OPTIMIZER + + # test separable + @test is_separable(objective_function(graph)) + sep_terms = extract_separable_terms(objective_function(graph), graph) + @test sep_terms[nodes[1]][1] == 1 * nodes[1][:x] + @test sep_terms[nodes[2]][1] == 2 * nodes[2][:x] + + @objective(graph, Min, nodes[1][:x]^2 + nodes[2][:x]^2) + @test is_separable(objective_function(graph)) + sep_terms = extract_separable_terms(objective_function(graph), graph) + @test sep_terms[nodes[1]][1] == 1 * nodes[1][:x]^2 + @test sep_terms[nodes[2]][1] == 1 * nodes[2][:x]^2 + + @objective(graph, Min, nodes[1][:x]^3 + nodes[2][:x]^3) + @test is_separable(objective_function(graph)) + sep_terms = extract_separable_terms(objective_function(graph), graph) + @test sep_terms[nodes[1]][1] isa JuMP.GenericNonlinearExpr{NodeVariableRef} + @test sep_terms[nodes[2]][1] isa JuMP.GenericNonlinearExpr{NodeVariableRef} + + @objective(graph, Min, nodes[1][:x]^2 + nodes[2][:x]^2 + nodes[1][:x] * nodes[2][:x]) + @test is_separable(objective_function(graph)) == false + + @objective(graph, Min, nodes[1][:x]^3 * nodes[2][:x]^2) + @test is_separable(objective_function(graph)) == false end function test_direct_moi_graph() @@ -330,6 +354,13 @@ function test_variable_constraints() @variable(n1, x >= 1) @variable(n2, 0 <= x <= 2) + # parameter + @variable(n2, p in Parameter(1.0)) + + @test parameter_value(p) == 1.0 + set_parameter_value(p, 2.0) + @test parameter_value(p) == 2.0 + # start value set_start_value(n2[:x], 3.0) @test start_value(n2[:x]) == 3.0