-
Notifications
You must be signed in to change notification settings - Fork 1
/
93A10-LinearTimeInvariantSystem.tex
95 lines (81 loc) · 3 KB
/
93A10-LinearTimeInvariantSystem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LinearTimeInvariantSystem}
\pmcreated{2013-03-22 14:22:25}
\pmmodified{2013-03-22 14:22:25}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{linear time invariant system}
\pmrecord{11}{35864}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{93A10}
\pmsynonym{LTI}{LinearTimeInvariantSystem}
%\pmkeywords{LTI}
\pmrelated{Controllability}
\pmrelated{Observability}
\pmrelated{SystemDefinitions}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
A \emph{linear time invariant system} (LTI) is a linear dynamical system $T(p)$,
\begin{align*}
y(k) &= T(p) \; u(k),
\end{align*}
with parameter $p$ that is time independent. $y(k)$ denotes the
system output and $u(k)$ denotes the input. The independent variable
$k$ can be denoted as time, index for a discrete sequences or
differential operaters (e.g. such as $s$ in Laplace domain or $\omega$
in frequency domain).
For example, for a simple mass-spring-dashpot system, the system
parameter $p$ can be selected as the mass $m$, spring constant $k$ and
damping coefficient $d$. The input $u$ to the said system can be chosen
as the force applied to the mass and the output $y$ can be chosen as the
mass's displacement.
LTI system has the following properties.
\begin{description}
\item[Linearity:]
If $y_1 = T x_1$ and $y_2 = T x_2$, then
$$T \{\alpha x_1 + \beta x_2 \} = \alpha y_1 + \beta y_2 $$
\item[Time Invariance:]
If $y(k) = T x(k)$, then
$$ y(k+\delta_k) = T x(k + \delta_k) $$
\item[Associative:]
$$ T_1 \cdot ( T_2 \cdot T_3 ) = (T_1 \cdot T_2) \cdot T_3 $$
\item[Commutative:]
$$ T_1 \cdot T_2 = T_2 \cdot T_1 $$
\end{description}
A LTI system can be represented with the following:
\begin{itemize}
\item Transfer function of Laplace transform variable $s$, which is commonly
used in control systems design.
\item Transfer function of Fourier transform variable $\omega$, which is
commonly used in communication theory and signal processing.
\item Transfer function of z-transform variable $z^{-1}$, which is
commonly used in digital signal processing (DSP).
\item State-space equations, which is commonly used in modern control
theory and mechanical systems.
\end{itemize}
Note that all transfer functions are LTI systems, but not all
state-space equations are LTI systems.
%%%%%
%%%%%
\end{document}