-
Notifications
You must be signed in to change notification settings - Fork 7
/
54-00-ClosedSet.tex
48 lines (38 loc) · 1.5 KB
/
54-00-ClosedSet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ClosedSet}
\pmcreated{2013-03-22 12:30:23}
\pmmodified{2013-03-22 12:30:23}
\pmowner{yark}{2760}
\pmmodifier{yark}{2760}
\pmtitle{closed set}
\pmrecord{10}{32739}
\pmprivacy{1}
\pmauthor{yark}{2760}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54-00}
\pmsynonym{closed subset}{ClosedSet}
\pmdefines{closed}
\endmetadata
\usepackage{amsfonts}
\usepackage{amssymb}
\def\R{\mathbb{R}}
\def\emptyset{\varnothing}
\begin{document}
\PMlinkescapephrase{closed under}
\PMlinkescapeword{contains}
\PMlinkescapeword{contained}
Let $(X,\tau)$ be a topological space. Then a subset $C\subseteq X$ is \emph{closed} if its complement $X\setminus C$ is open under the topology $\tau$.
Examples:
\begin{itemize}
\item In any topological space $(X,\tau)$, the sets $X$ and $\emptyset$ are always closed.
\item Consider $\R$ with the standard topology. Then $[0,1]$ is closed since its complement $(-\infty,0) \cup (1,\infty)$ is open (being the union of two open sets).
\item Consider $\R$ with the lower limit topology. Then $[0,1)$ is closed since its complement $(-\infty,0)\cup[1,\infty)$ is open.
\end{itemize}
Closed subsets can also be characterized as follows:
A subset $C\subseteq X$ is closed if and only if $C$ contains all of its cluster points, that is, $C'\subseteq C$.
So the set $\{1,1/2,1/3,1/4,\ldots\}$ is not closed under the standard topology on $\R$ since $0$ is a cluster point not contained in the set.
%%%%%
%%%%%
\end{document}