-
Notifications
You must be signed in to change notification settings - Fork 2
/
40A05-GoldenRatio.tex
71 lines (55 loc) · 2.09 KB
/
40A05-GoldenRatio.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{GoldenRatio}
\pmcreated{2013-03-22 11:56:02}
\pmmodified{2013-03-22 11:56:02}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{golden ratio}
\pmrecord{17}{30663}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40A05}
\pmclassification{msc}{11B39}
\pmsynonym{golden number}{GoldenRatio}
\pmrelated{ProportionEquation}
\pmrelated{ConstructionOfCentralProportion}
\pmrelated{DerivationOfPlasticNumber}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{psfrag}
\begin{document}
The ``Golden Ratio'', or $\phi$, has the value
$$ 1.61803398874989484820\ldots $$
This number gets its rather illustrious name from the fact that the Greeks thought that a rectangle with ratio of side lengths equal to $\phi$ was the most pleasing to the eye, and much of classical Greek architecture is based on this premise. In \PMlinkescapetext{addition}, an aesthetically pleasing aspect of a rectangle with this ratio, from a mathematical viewpoint, is that if we embed and remove a $w\times w$ square in the below diagram, the remaining rectangle also has a width-to-length ratio of $\phi$.
\begin{center}
\psfrag{l}{$\;\;\;\;\;\;\;\;l$}
\psfrag{w}{$\!\!\!w$}
\includegraphics[scale=.6]{golden.eps}
{\tiny Above: The golden rectangle; $l/w = \phi$. }
\end{center}
$\phi$ has plenty of interesting mathematical \PMlinkescapetext{properties}, however. Its value is exactly
$$ \frac{1+\sqrt{5}}{2} $$
The value
$$ \frac{1-\sqrt{5}}{2} $$
is often called $\phi'$. $\phi$ and $\phi'$ are the two roots of the recurrence relation given by the Fibonacci sequence. The following \PMlinkescapetext{identities} hold for $\phi$ and $\phi'$ :
\begin{itemize}
\item $\frac{1}{\phi} = - \phi' $
\item $1-\phi = \phi'$
\item $\frac{1}{\phi'} = - \phi $
\item $1-\phi' = \phi $
\end{itemize}
and so on. These give us
$$ \phi^{-1} + \phi^0 = \phi^{1} $$
which implies
$$ \phi^{n-1} + \phi^n = \phi^{n+1} $$
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}