-
Notifications
You must be signed in to change notification settings - Fork 2
/
40A05-EveryBoundedSequenceHasLimitAlongAnUltrafilter.tex
205 lines (166 loc) · 5.73 KB
/
40A05-EveryBoundedSequenceHasLimitAlongAnUltrafilter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{EveryBoundedSequenceHasLimitAlongAnUltrafilter}
\pmcreated{2013-03-22 15:32:26}
\pmmodified{2013-03-22 15:32:26}
\pmowner{kompik}{10588}
\pmmodifier{kompik}{10588}
\pmtitle{every bounded sequence has limit along an ultrafilter}
\pmrecord{4}{37435}
\pmprivacy{1}
\pmauthor{kompik}{10588}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40A05}
\pmclassification{msc}{03E99}
\pmrelated{Ultrafilter}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\newcommand{\N}[0]{\mathbb{N}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\newcommand{\Map}[3]{#1:#2\to#3}
\newcommand{\Emb}[3]{#1:#2\hookrightarrow#3}
\newcommand{\Mor}[3]{#2\overset{#1}\to#3}
\newcommand{\Cat}[1]{\mathcal{#1}}
\newcommand{\Kat}[1]{\mathbf{#1}}
\newcommand{\Func}[3]{\Map{#1}{\Cat{#2}}{\Cat{#3}}}
\newcommand{\Funk}[3]{\Map{#1}{\Kat{#2}}{\Kat{#3}}}
\newcommand{\intrv}[2]{\langle #1,#2 \rangle}
\newcommand{\vp}{\varphi}
\newcommand{\ve}{\varepsilon}
\newcommand{\Invimg}[2]{\inv{#1}(#2)}
\newcommand{\Img}[2]{#1[#2]}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\limti}[1]{\lim\limits_{#1\to\infty}}
\newcommand{\Ra}{\Rightarrow}
%fonts
\newcommand{\mc}{\mathcal}
%shortcuts
\newcommand{\Ob}{\mathrm{Ob}}
\newcommand{\Hom}{\mathrm{hom}}
\newcommand{\homs}[2]{\mathrm{hom(}{#1},{#2}\mathrm )}
\newcommand{\Eq}{\mathrm{Eq}}
\newcommand{\Coeq}{\mathrm{Coeq}}
%theorems
\newtheorem{THM}{Theorem}
\newtheorem{DEF}{Definition}
\newtheorem{PROP}{Proposition}
\newtheorem{LM}{Lemma}
\newtheorem{COR}{Corollary}
\newtheorem{EXA}{Example}
%categories
\newcommand{\Top}{\Kat{Top}}
\newcommand{\Haus}{\Kat{Haus}}
\newcommand{\Set}{\Kat{Set}}
%diagrams
\newcommand{\UnimorCD}[6]{
\xymatrix{ {#1} \ar[r]^{#2} \ar[rd]_{#4}& {#3} \ar@{-->}[d]^{#5} \\
& {#6} } }
\newcommand{\RovnostrCD}[6]{
\xymatrix@C=10pt@R=17pt{
& {#1} \ar[ld]_{#2} \ar[rd]^{#3} \\
{#4} \ar[rr]_{#5} && {#6} } }
\newcommand{\RovnostrCDii}[6]{
\xymatrix@C=10pt@R=17pt{
{#1} \ar[rr]^{#2} \ar[rd]_{#4}&& {#3} \ar[ld]^{#5} \\
& {#6} } }
\newcommand{\RovnostrCDiiop}[6]{
\xymatrix@C=10pt@R=17pt{
{#1} && {#3} \ar[ll]_{#2} \\
& {#6} \ar[lu]^{#4} \ar[ru]_{#5} } }
\newcommand{\StvorecCD}[8]{
\xymatrix{
{#1} \ar[r]^{#2} \ar[d]_{#4} & {#3} \ar[d]^{#5} \\
{#6} \ar[r]_{#7} & {#8}
}
}
\newcommand{\TriangCD}[6]{
\xymatrix{ {#1} \ar[r]^{#2} \ar[rd]_{#4}&
{#3} \ar[d]^{#5} \\
& {#6} } }
\newcommand{\F}{\mc F}
\newcommand{\Flim}{\operatorname{\F\text{-}\lim}}
\begin{document}
\begin{THM}
Let $\F$ be an ultrafilter on $\N$ and $(x_n)$ be a real bounded
sequence. Then $\Flim x_n$ exists.
\end{THM}
\begin{proof}
Let $(x_n)$ be a bounded sequence. Choose $a_0$ and $b_0$ such
that $a_0\leq x_n \leq b_0$. Put $c_0:=\frac{a_0+b_0}2$. Then
precisely one of the sets $\{n\in\N; x_n \in \intrv{a_0}{c_0}\}$,
$\{n\in\N; x_n \in \intrv{c_0}{b_0}\}$ belongs to the filter $\F$.
(Their union is $\N$ and the filter $\F$ is an ultrafilter.) We
choose $\intrv{a_1}{b_1}$ as that subinterval from
$\intrv{a_0}{c_0}$ and $\intrv{c_0}{b_0}$ for which $C:=\{n\in\N;
x_n \in \intrv{a_1}{b_1}\}$ belongs to $\F$.
Now we again bisect the interval $\intrv{a_1}{b_1}$ by putting
$c_1=\frac{a_1+b_1}2$. Denote $A:=\{n\in\N; x_n \in
\intrv{a_1}{c_1}\}$, $B:=\{n\in\N; x_n \in \intrv{c_1}{b_1}\}$. It
holds $B\cup A\cup (\N\setminus C)=\N$. By the alternative
characterization of ultrafilters we get that one of these sets is
in $\F$. The set $\N\setminus C$ doesn't belong to $\F$, therefore
it must be one of the sets $A$ and $B$. We choose the
corresponding interval for $\intrv{a_2}{b_2}$.
By induction we obtain the monotonous sequences $(a_n)$, $(b_n)$
with the same limit $\limti n a_n = \limti n b_n :=L$ such that
for any $n\in\N$ it holds $\{n\in\N; x_n \in
\intrv{a_1}{b_1}\}\in\F$.
We claim that $\Flim x_n=L$. Indeed, for any $\ve>0$ there is
$n\in\N$ such that $\intrv{a_n}{b_n}\subseteq (L-\ve,L+\ve)$, thus
$\{n\in\N; x_n \in \intrv{a_n}{b_n}\} \subseteq A(\ve)$. The set
$\{n\in\N; x_n \in \intrv{a_1}{b_1}\}$ belongs to $\F$, hence
$A(\ve)\in\F$ as well.
\end{proof}
Note that, if we modify the definition of $\F$-limit in a such way
that we admit the values $\pm\infty$, then every sequence has
$\F$-limit along an ultrafilter $\F$. (The limit is $+\infty$ if
for each neighborhood $V$ of infinity, the set $\{n\in\N; x_n\in
V\}$ belongs to $\F$. Similarly for $-\infty$.)
\begin{thebibliography}{1}
\bibitem{agg}
M.~A. Alekseev, L.~{Yu.} Glebsky, and E.~I. Gordon, \emph{On
approximations of
groups, group actions {and Hopf} algebras}, Journal of Mathematical Sciences
\textbf{107} (2001), no.~5, 4305--4332.
\bibitem{balste}
B.~Balcar and P.~{\v{S}}t\v{e}p\'anek, \emph{Teorie mno\v{z}in},
Academia,
Praha, 1986 (Czech).
\bibitem{hrjech}
K.~Hrbacek and T.~Jech, \emph{{Introduction to set theory}},
{Marcel Dekker},
New York, 1999.
\end{thebibliography}
%%%%%
%%%%%
\end{document}