-
Notifications
You must be signed in to change notification settings - Fork 2
/
40A05-DoubleSeries.tex
75 lines (65 loc) · 2.6 KB
/
40A05-DoubleSeries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DoubleSeries}
\pmcreated{2013-03-22 16:32:54}
\pmmodified{2013-03-22 16:32:54}
\pmowner{PrimeFan}{13766}
\pmmodifier{PrimeFan}{13766}
\pmtitle{double series}
\pmrecord{6}{38731}
\pmprivacy{1}
\pmauthor{PrimeFan}{13766}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40A05}
\pmclassification{msc}{26A06}
\pmsynonym{double series theorem}{DoubleSeries}
%\pmkeywords{absolutely convergent}
\pmrelated{FourierSineAndCosineSeries}
\pmrelated{AbsoluteConvergenceOfDoubleSeries}
\pmrelated{PerfectPower}
\pmdefines{diagonal summing}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
\textbf{Theorem.}\, If the {\em double series}
\begin{align}
\sum_{m=1}^\infty\sum_{n=1}^\infty a_{mn} =
\sum_{n=1}^\infty a_{1n}+\sum_{n=1}^\infty a_{2n}+\sum_{n=1}^\infty a_{3n}
+\ldots
\end{align}
converges and if it remains convergent when the \PMlinkescapetext{terms} of the partial series are replaced with their absolute values, i.e. if the series
\begin{align}
\sum_{n=1}^\infty|a_{1n}|+\sum_{n=1}^\infty|a_{2n}|+\sum_{n=1}^\infty|a_{3n}|
+\ldots
\end{align}
has a finite sum $M$, then the addition in (1) can be performed in reverse \PMlinkescapetext{order}, i.e.
$$\sum_{m=1}^\infty\sum_{n=1}^\infty a_{mn} = \sum_{n=1}^\infty\sum_{m=1}^\infty a_{mn} =
\sum_{m=1}^\infty a_{m1}+\sum_{m=1}^\infty a_{m2}+\sum_{m=1}^\infty a_{m3}
+\ldots$$
{\em Proof.}\, The assumption on (2) implies that the sum of an arbitrary finite amount of the numbers $|a_{mn}|$ is always\ $\leqq M$.\, This means that (1) is absolutely convergent, and thus the order of summing is insignificant.
\textbf{Note.}\, The series satisfying the assumptions of the theorem is often denoted by
$$\sum_{m,n=1}^\infty a_{mn}$$
and this may by interpreted to \PMlinkescapetext{mean} an arbitrary summing \PMlinkescapetext{order}.\, One can use e.g. the {\em diagonal summing}:
$$a_{11}+a_{12}+a_{21}+a_{13}+a_{22}+a_{31}+\ldots$$
%%%%%
%%%%%
\end{document}