-
Notifications
You must be signed in to change notification settings - Fork 5
/
20-00-UniquenessOfInverseforGroups.tex
76 lines (63 loc) · 1.95 KB
/
20-00-UniquenessOfInverseforGroups.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{UniquenessOfInverseforGroups}
\pmcreated{2013-03-22 14:14:33}
\pmmodified{2013-03-22 14:14:33}
\pmowner{waj}{4416}
\pmmodifier{waj}{4416}
\pmtitle{uniqueness of inverse (for groups)}
\pmrecord{5}{35687}
\pmprivacy{1}
\pmauthor{waj}{4416}
\pmtype{Result}
\pmcomment{trigger rebuild}
\pmclassification{msc}{20-00}
\pmclassification{msc}{20A05}
\pmrelated{UniquenessOfAdditiveIdentityInARing}
\pmrelated{IdentityElementIsUnique}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\begin{document}
\PMlinkescapeword{lemma}
{\bf Lemma}
Suppose $(G,\ast)$ is a group. Then every element in $G$ has a
unique inverse.
\emph{Proof.} Suppose $g\in G$. By the group axioms we know that there
is an $h\in G$ such that
$$ g\ast h = h\ast g = e,$$
where $e$ is the identity element in $G$. If there is also a $h'\in G$
satisfying
$$ g\ast h' = h'\ast g = e,$$
then
$$ h = h\ast e = h \ast(g \ast h') =(h\ast g)\ast h' = e\ast h' = h',$$
so $h=h'$, and $g$ has a unique inverse. $\Box$
%%%%%
%%%%%
\end{document}