-
Notifications
You must be signed in to change notification settings - Fork 5
/
20-00-NoncommutativeRingsOfOrderFour.tex
58 lines (50 loc) · 1.72 KB
/
20-00-NoncommutativeRingsOfOrderFour.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{NoncommutativeRingsOfOrderFour}
\pmcreated{2013-03-22 17:09:24}
\pmmodified{2013-03-22 17:09:24}
\pmowner{Wkbj79}{1863}
\pmmodifier{Wkbj79}{1863}
\pmtitle{non-commutative rings of order four}
\pmrecord{12}{39467}
\pmprivacy{1}
\pmauthor{Wkbj79}{1863}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{20-00}
\pmclassification{msc}{16B99}
\pmrelated{Klein4Ring}
\pmrelated{OppositeRing}
\pmrelated{ExampleOfKlein4Ring}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{pstricks}
\usepackage{psfrag}
\usepackage{graphicx}
\usepackage{amsthm}
%%\usepackage{xypic}
\begin{document}
\PMlinkescapeword{order}
\PMlinkescapeword{multiplication}
Up to isomorphism, there are two non-commutative rings of \PMlinkname{order}{OrderRing} four. Since all cyclic rings are \PMlinkname{commutative}{CommutativeRing}, one can immediately deduce that a ring of order four must have an additive group that is isomorphic to $\mathbb{F}_2 \oplus \mathbb{F}_2$.
One of the two non-commutative rings of order four is the Klein 4-ring, whose multiplication table is given by:
$$\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a \\
b & 0 & b & 0 & b \\
c & 0 & c & 0 & c \end{array}$$
The other is closely related to the Klein 4-ring. In fact, it is anti-isomorphic to the Klein 4-ring; that is, its multiplication table is obtained by swapping the \PMlinkescapetext{rows and columns} of the multiplication table for the Klein 4-ring:
$$\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c \\
b & 0 & 0 & 0 & 0 \\
c & 0 & a & b & c \end{array}$$
%%%%%
%%%%%
\end{document}