-
Notifications
You must be signed in to change notification settings - Fork 4
/
15A03-AnotherProofOfRanknullityTheorem.tex
59 lines (51 loc) · 2.72 KB
/
15A03-AnotherProofOfRanknullityTheorem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{AnotherProofOfRanknullityTheorem}
\pmcreated{2013-03-22 18:06:14}
\pmmodified{2013-03-22 18:06:14}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{another proof of rank-nullity theorem}
\pmrecord{4}{40647}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15A03}
\pmrelated{ProofOfRankNullityTheorem}
\endmetadata
\usepackage{amssymb,amscd}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%\usepackage{xypic}
\usepackage{pst-plot}
% define commands here
\newcommand*{\abs}[1]{\left\lvert #1\right\rvert}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newcommand{\real}{\mathbb{R}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\mpdiff}[3]{\frac{\partial^#1 #2}{\partial #3^#1}}
\def\dim{\operatorname{dim}}
\def\rank{\operatorname{rank}}
\def\ker{\operatorname{ker}}
\def\nullity{\operatorname{nullity}}
\begin{document}
Let $\phi: V\to W$ be a linear transformation from vector spaces $V$ to $W$. Recall that the rank of $\phi$ is the dimension of the image of $\phi$ and the nullity of $\phi$ is the dimension of the kernel of $\phi$.
\begin{prop} $\dim(V)=\rank(\phi)+\nullity(\phi)$. \end{prop}
\begin{proof} Let $K=\ker(\phi)$. $K$ is a subspace of $V$ so it has a unique algebraic complement $L$ such that $V=K\oplus L$. It is evident that $$\dim(V)=\dim(K)+\dim(L)$$ since $K$ and $L$ have disjoint bases and the union of their bases is a basis for $V$.
Define $\phi': L\to \phi(V)$ by restriction of $\phi$ to the subspace $L$. $\phi'$ is obviously a linear transformation. If $\phi'(v)=0$, then $\phi(v)=\phi'(v)=0$ so that $v\in K$. Since $v\in L$ as well, we have $v\in K\cap L=\lbrace 0\rbrace$, or $v=0$. This means that $\phi'$ is one-to-one. Next, pick any $w\in \phi(V)$. So there is some $v\in V$ with $\phi(v)=w$. Write $v=x+y$ with $x\in K$ and $y\in L$. So $\phi'(y)=\phi(y)=0+\phi(y) =\phi(x)+ \phi(y) =\phi(v) =w$, and therefore $\phi'$ is onto. This means that $L$ is isomorphic to $\phi(V)$, which is equivalent to saying that $\dim(L)=\dim(\phi(V))=\rank(\phi)$. Finally, we have $$\dim(V)=\dim(K)+\dim(L)=\nullity(\phi)+\rank(\phi).$$
\end{proof}
\textbf{Remark}. The dimension of $V$ is not assumed to be finite in this proof. For another approach (where finite dimensionality of $V$ is assumed), please see \PMlinkname{this entry}{ProofOfRankNullityTheorem}.
%%%%%
%%%%%
\end{document}