-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-01-IsomorphismOfRingsOfRealAndComplexMatrices.tex
128 lines (113 loc) · 3.48 KB
/
15-01-IsomorphismOfRingsOfRealAndComplexMatrices.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{IsomorphismOfRingsOfRealAndComplexMatrices}
\pmcreated{2013-03-22 16:17:15}
\pmmodified{2013-03-22 16:17:15}
\pmowner{Wkbj79}{1863}
\pmmodifier{Wkbj79}{1863}
\pmtitle{isomorphism of rings of real and complex matrices}
\pmrecord{10}{38403}
\pmprivacy{1}
\pmauthor{Wkbj79}{1863}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-01}
\pmclassification{msc}{15A33}
\pmclassification{msc}{15A21}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{psfrag}
\usepackage{graphicx}
\usepackage{amsthm}
%%\usepackage{xypic}
\newtheorem*{thm*}{Theorem}
\begin{document}
Note that \PMlinkname{submatrix notation}{Submatrix} will be used within this entry. Also, for any positive integer $n$, $M_{n \times n}(R)$ will be used to denote the ring of $n \times n$ matrices with entries from the ring $R$, and $R_n$ will be used to denote the following subring of $M_{2n \times 2n}(\mathbb{R})$:
$$R_n=\left\{ P \in M_{2n \times 2n}(\mathbb{R}) : P=\left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \text{ for some } A,B \in M_{n \times n}(\mathbb{R}) \right\}$$
\begin{thm*}
For any positive integer $n$, $R_n \cong M_{n \times n}(\mathbb{C})$.
\end{thm*}
\begin{proof}
Define $\varphi \colon R_n \to M_{n \times n}(\mathbb{C})$ by $\displaystyle \varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \right) = A+iB$ for $A,B \in M_{n \times n}(\mathbb{R})$.
Let $A,B,C,D \in M_{n \times n}(\mathbb{R})$ such that $\displaystyle \varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \right) =\varphi \left( \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right) \right)$. Then $A+iB=C+iD$. Therefore, $A=C$ and $B=D$. Hence, $\displaystyle \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) = \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right)$. It follows that $\varphi$ is injective.
Let $Z \in M_{n \times n}(\mathbb{C})$. Then there exist $X,Y \in M_{n \times n}(\mathbb{R})$ such that $X+iY=Z$. Since $\varphi \left( \left( \begin{array}{cc}
X & Y \\
-Y & X \end{array}
\right) \right)=X+iY=Z$, it follows that $\varphi$ is surjective.
Let $A,B,C,D \in M_{n \times n}(\mathbb{R})$. Then
\begin{center}
$\begin{array}{rl}
\displaystyle \varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) + \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right) \right) & \displaystyle =\varphi \left( \left( \begin{array}{cc}
A+C & B+D \\
-B-D & A+C \end{array}
\right) \right) \\
\\
& =A+C+i(B+D) \\
\\
& =A+iB+C+iD \\
\\
& \displaystyle =\varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \right) + \varphi \left( \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right) \right) \end{array}$
\end{center}
and
\begin{center}
$\begin{array}{rl}
\displaystyle \varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right) \right) & \displaystyle =\varphi \left( \left( \begin{array}{cc}
AC-BD & AD+BC \\
-AD-BC & AC-BD \end{array}
\right) \right) \\
\\
& =AC-BD+i(AD+BC) \\
\\
& =(A+iB)(C+iD) \\
\\
& \displaystyle =\varphi \left( \left( \begin{array}{cc}
A & B \\
-B & A \end{array}
\right) \right) \varphi \left( \left( \begin{array}{cc}
C & D \\
-D & C \end{array}
\right) \right) . \end{array}$
\end{center}
It follows that $\varphi$ is an \PMlinkname{isomorphism}{RingIsomorphism}.
\end{proof}
%%%%%
%%%%%
\end{document}