-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-ZeroMap.tex
72 lines (63 loc) · 1.9 KB
/
15-00-ZeroMap.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ZeroMap}
\pmcreated{2013-03-22 14:03:38}
\pmmodified{2013-03-22 14:03:38}
\pmowner{matte}{1858}
\pmmodifier{matte}{1858}
\pmtitle{zero map}
\pmrecord{6}{35416}
\pmprivacy{1}
\pmauthor{matte}{1858}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmrelated{ZeroVectorSpace}
\pmrelated{ConstantFunction}
\pmrelated{IdentityMap}
\pmdefines{zero operator}
\endmetadata
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\R}[0]{\mathbb{R}}
\newcommand{\C}[0]{\mathbb{C}}
\newcommand{\N}[0]{\mathbb{N}}
\newcommand{\Z}[0]{\mathbb{Z}}
% The below lines should work as the command
% \renewcommand{\bibname}{References}
% without creating havoc when rendering an entry in
% the page-image mode.
\makeatletter
\@ifundefined{bibname}{}{\renewcommand{\bibname}{References}}
\makeatother
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\begin{document}
{\bf Definition}
Suppose $X$ is a set, and $Y$ is a vector space with zero vector $0$.
If $Z$ is a map $Z:X\to Y$, such that $Z(x)=0$ for all $x$ in $X$,
then $Z$ is a {\bf zero map}.
\subsubsection{Examples}
\begin{enumerate}
\item On the set of non-invertible $n\times n$ matrices, the determinant
is a zero map.
\item If $X$ is the zero vector space, any linear map $T:X\to Y$ is
a zero map. In fact, $T(0)=T(0\cdot 0)=0T(0)=0$.
\item If $X=Y$ and its field is $\R$ or $\C$, then the spectrum of $Z$ is
$\{0\}$.
\end{enumerate}
%%%%%
%%%%%
\end{document}