-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-SymmetricMatrix.tex
61 lines (56 loc) · 1.29 KB
/
15-00-SymmetricMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SymmetricMatrix}
\pmcreated{2013-03-22 12:00:58}
\pmmodified{2013-03-22 12:00:58}
\pmowner{Daume}{40}
\pmmodifier{Daume}{40}
\pmtitle{symmetric matrix}
\pmrecord{13}{30974}
\pmprivacy{1}
\pmauthor{Daume}{40}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmsynonym{symmetric}{SymmetricMatrix}
\pmrelated{SelfDual}
\pmrelated{HessianMatrix}
\pmrelated{SkewHermitianMatrix}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%\usepackage{xypic}
\begin{document}
\PMlinkescapeword{properties}
\textbf{Definition:} \newline Let $A=(a_{ij})$ be a square matrix of
order $n$. The matrix $A$ is \emph{symmetric} if $a_{ij} = a_{ji}$
for all $1 \leq i \leq n, 1 \leq j \leq n$.
\begin{center}$A =
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix}$
\end{center}
\textbf{Properties:}
\begin{enumerate}
\item $A^t = A$ where $A^t$ is the matrix transpose
\end{enumerate}
\textbf{Examples:}
\begin{itemize}
\item $\begin{pmatrix}
a & b \\
b & c
\end{pmatrix}$
\item $\begin{pmatrix}
a & b & c \\
b & d & e \\
c & e & f
\end{pmatrix}$
\end{itemize}
%%%%%
%%%%%
%%%%%
\end{document}