-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-StrictlyUpperTriangularMatrix.tex
65 lines (55 loc) · 1.9 KB
/
15-00-StrictlyUpperTriangularMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{StrictlyUpperTriangularMatrix}
\pmcreated{2013-03-22 13:42:15}
\pmmodified{2013-03-22 13:42:15}
\pmowner{Daume}{40}
\pmmodifier{Daume}{40}
\pmtitle{strictly upper triangular matrix}
\pmrecord{8}{34381}
\pmprivacy{1}
\pmauthor{Daume}{40}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmsynonym{supertriangular}{StrictlyUpperTriangularMatrix}
\pmdefines{strictly lower triangular matrix}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
A \emph{strictly \PMlinkescapetext{upper triangular matrix}} is an upper triangular matrix which has $0$ on the main diagonal. Similarly a \emph{strictly lower triangular matrix} is a lower triangular matrix which has $0$ on the main diagonal. i.e.
A strictly upper triangular matrix is of the form
$$ \begin{bmatrix}
0 & a_{12} & a_{13} & \cdots & a_{1n} \\
0 & 0 & a_{23} & \cdots & a_{2n} \\
0 & 0 & 0 & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix} $$
A strictly lower triangular matrix is of the form
$$ \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
a_{21} & 0 & 0 & \cdots & 0 \\
a_{31} & a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & 0
\end{bmatrix} $$
%%%%%
%%%%%
\end{document}