-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-SkewsymmetricMatrix.tex
82 lines (77 loc) · 2.33 KB
/
15-00-SkewsymmetricMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SkewsymmetricMatrix}
\pmcreated{2013-03-22 12:01:05}
\pmmodified{2013-03-22 12:01:05}
\pmowner{Daume}{40}
\pmmodifier{Daume}{40}
\pmtitle{skew-symmetric matrix}
\pmrecord{10}{30977}
\pmprivacy{1}
\pmauthor{Daume}{40}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmrelated{SelfDual}
\pmrelated{AntiSymmetric}
\pmrelated{SkewHermitianMatrix}
\pmrelated{AntisymmetricMapping}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%\usepackage{xypic}
\begin{document}
\textbf{Definition:} \newline Let $A$ be an square matrix of
order $n$ with real entries $(a_{ij})$.
The matrix $A$ is skew-symmetric if $a_{ij} =
-a_{ji}$ for all $1 \leq i \leq n, 1 \leq j \leq n$.
\begin{center}$A =
\begin{pmatrix}
a_{11}=0 & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}=0
\end{pmatrix}$
\end{center}
The main diagonal entries are zero because
$a_{i,i} = -a_{i,i}$ implies $a_{i,i} = 0$.
One can see skew-symmetric matrices as a
special case of complex skew-Hermitian matrices. Thus,
all properties of skew-Hermitian matrices also hold
for skew-symmetric matrices.
\textbf{Properties:}
\begin{enumerate}
\item The matrix $A$ is skew-symmetric if and only if
$A^t = -A$, where $A^t$ is the matrix transpose
\item For the trace operator, we have that
$\operatorname{tr}(A) = \operatorname{tr}(A^t)$.
Combining this with property (1), it follows
that $ \operatorname{tr}(A)=0$ for a skew-symmetric matrix $A$.
\item Skew-symmetric matrices form a vector space: If $A$ and $B$
are skew-symmetric and $\alpha, \beta\in \mathbb{R}$, then
$\alpha A + \beta B$ is also skew-symmetric.
\item Suppose $A$ is a skew-symmetric matrix and $B$ is a matrix of
same order as $A$. Then $B^t A B$ is skew-symmetric.
\item All eigenvalues of skew-symmetric matrices are
purely imaginary or zero. This result is proven on the page
for skew-Hermitian matrices.
\item According to Jacobi's Theorem, the determinant of a
skew-symmetric matrix of odd order is zero.
\end{enumerate}
\textbf{Examples:}
\begin{itemize}
\item $\begin{pmatrix}
0 & b \\
-b & 0
\end{pmatrix}$
\item $\begin{pmatrix}
0 & b & c \\
-b & 0 & e \\
-c & -e & 0
\end{pmatrix}$
\end{itemize}
%%%%%
%%%%%
%%%%%
\end{document}