-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-SkewHadamardMatrix.tex
80 lines (64 loc) · 2.51 KB
/
15-00-SkewHadamardMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SkewHadamardMatrix}
\pmcreated{2013-03-22 16:13:02}
\pmmodified{2013-03-22 16:13:02}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{skew Hadamard matrix}
\pmrecord{13}{38314}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
\PMlinkescapeword{rows}
\PMlinkescapeword{row}
\PMlinkescapeword{collection}
\PMlinkescapeword{columns}
\PMlinkescapeword{column}
\PMlinkescapeword{contain}
\PMlinkescapeword{property}
\PMlinkescapeword{order}
\PMlinkescapeword{states}
\PMlinkescapeword{satisfies}
\PMlinkescapeword{integer}
A Hadamard matrix $H$ is \emph{skew Hadamard} if $H+H^T=2I$.
A collection of skew Hadamard matrices, including at least one example of every order $n \le 100$
and also including every equivalence class of order $\le 28$, is available
\PMlinkexternal{at this web page}{http://www.rangevoting.org/SkewHad.html}.
It has been conjectured that one exists for every positive order divisible by 4.
Reid and Brown in 1972 showed that there exists a
``doubly regular tournament of order n''
if and only if there exists a skew Hadamard matrix of order n+1.
\begin{thebibliography}{9}
\bibitem{GeorgiouKS}
S. Georgiou, C. Koukouvinos, J. Seberry, \emph{Hadamard matrices, orthogonal designs and construction algorithms}, pp. 133-205 in DESIGNS 2002: Further computational and constructive design theory, Kluwer 2003.
\bibitem{ReidB}
K.B. Reid, E. Brown, \emph{Doubly regular tournaments are equivalent to skew Hadamard matrices}, J. Combinatorial Theory A 12 (1972) 332-338.
\bibitem{SeberryY}
J. Seberry, M.Yamada, \emph{Hadamard matrices, sequences, and block designs}, pp. 431-560 in Contemporary Design Theory, a collection of surveys (J.H.Dinitz \& D.R.Stinson eds.), Wiley 1992.
\end{thebibliography}
\end{document}
%%%%%
%%%%%
\end{document}